Continuation Models for AOP

Christopher Dutchyn

University of Saskatchewan

Software Research Lab
e b

a__an

How Might We Program Display Updating?

class Point extends Shape {
private int x =0,y =0;

e a1 int getX() { return x; }
Flle Edit Align Attributes Debug Animation Images Window i .
&l lksIICkHAITAI\”%I!DI\OI!OI\ A[A[0] \lxnaumurmn— int getY() { return y; }

[JHotDraw - untitiedo *

/[Line ool ¥ [void setX(int x) { this.x = x; }
void setY(int y) { this.y = y; }

}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) { this.p1 =p1;}
Line Tool void setP2(Point p2) { this.p2 = p2; }

Object-Oriented Solution

Separate declaration
of behaviour for
operations

setX

setY

setP1

setP2

Each operation does
its own thing

Each operation
updates display in a
way
consistent with others

class Point extends Shape {
private int x =0,y =0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) { this.x = x;
Display.update(); }

void setY(int y) { this.y = y;
Display.update(); }

}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) { this.p1 = p1;
Display.update(); }

void setP2(Point p2) { this.p2 = p2;
Display.update(); }

}

Same Behaviour ... Different Modularity

aspect DisplayUpdating {
pointcut change():
execution(void Shape+.set*(*));

after() returning : change() {
Display.update();
}

}

AN

Aspect declares

~ Some points in
execution represent a

display state change

class Point extends Shape {

execution of methods
matching this pattern

class Line extends Shape {

After a change occurs
update the display

Simple Comparison

AO Solution

Display up datlntg
modu arized info a single
location

Behaviour of

each shape is manifest
In single module
display updating is
manifest in single
module

Interaction between display
updating and shape
movement is explicit

OO Solution

Display updating is
scattered across
multiple data modules

tangled with the code In
those modules

Behaviour of each shape
and associated display
updating is manifest in
single module

Interactlon between display
ufr1) dating and each

ape s movement is
explicit

AOP Provides a New Kind of Modularity

class Point extends Shape {
private int x =0,y = 0;

int getX() { return x; }
int getY() { returny; }

void setX(int x) { this.x = x; }
void setY(int y) { this.y = y; }

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) { this.p1 =p1;}
void setP2(Point p2) { this.p2 = p2; }

aspect DisplayUpdating {
pointcut change():
execution(void Shape+.set*(*));

after() returning: change() {
Display.update();
}

AOP Provides a New Kind of Modularity

class Point extends Shape {

void setX(int x) { this.x = x; } aspect DisplayUpdating {

void setY(int y) { this.y = y; }
}

after() returning: change() {
Display.update();

Join

class Line extends Shape { o }

}/
void setP1(Point p1) { this.p1 = p1/} Advice

void setP2(Point p2) { this.p2 = p2; }

}

AOP Provides a New Kind of Modularity

class Point extends Shape { IP()intcut
4

aspect\DispIayUpdating {
pointcut change():
execution(void Shape+.set*(*));

|

|
} A

Join
class Line extends Shape { HOiNt I
' | D

|

: Advice
} |

AOP Provides a New Kind of Modularity

class Point extends Shape {

}

class Line extends Shape {

Joﬁ%

PO

|P0h1
:,1

tcut

|

aspect DisplayUpdating {

Join Points, Pointcuts, and
Adyvice

An Intellectual Model of AOP

Without Continuations

(define (pick x)
(if x 1 2))
(+ 3 (pick #t))

Without Continuations

(define (pick x)
(if x 1 2))
(+ 3 (pick #t))

Continuations [Strachey+ '74; Reynolds ’74; Meyers ’85; ...]

Continuations reify control state
Escape semantics = not composable

(define (pick x) (if x 1 2))
(+ 3 (pick #t))

evaluation of operands
has continuation

N\

(evlis (pick #t) p (A(f b) (eval (body f)
(extend (env f) (id f) b)
(A(i) (+31))))

Sub-Continuations [Felleisen ’88; Hieb+ '94; Shan '02;

Agere+°05; ...]

Structure within continuations

composable

(define (pick x) (if x 1 2))
(+ 3 (pick #t))

evaluation of operands execution

has continuation /sﬁo-continuation

(evlis (pick #f) p (push

{exec-proc) K)

— (<CLO> #t) (A(f b) (eval (body f)

(extend (env fun) (id fun) b)
K))

= 1 ~ (A() (+ 3))))

Join Points Modeled by Sub-Continuations

“Principled points in execution”
join points correspond to sub-continuations

call join point = dispatch sub-continuation
(send aPoint setX 7)

(evlis (aPoint,7) p (push | (dispatch setX) K))

N ((objy ,7) ~» (A(o V) (apply (dispatch o setX)
(push [{exec-method o v) K))
= (METH) ~ (A(m) (apply-method m o v K))\

=> (eval (body m) [this—o (ids m)—vV] k)

= ? » Kk

execution join point = exec-method sub-continuation

field get/set join points ...

Procedures Transform Continuations [riiinski °89; Griffin
’91; Murthi '92]

Procedures have two different modes of
application:
Applied to a value: they yield another value

(deﬁr%p(lol%g)E?(i?xgozn)’%lnuatlon: they yield another continuation

(+ 3 (pick #t))\

Transforms value

Transforms continuation
' (+31)
Takes (A(i) (+ 3 1))
(¢ (A(b) ((A(i) (+ 3 1))
(if b 1 2)))

Takes #t to 1

pick :: Bool — Int

pick :: 7Int — "Bool

Advice Modeled as Sub-Cont Transformers

Advice body extends sub-continuation behaviour

(around change (A(o v)
(proceed o v)

)

(send aPoint setX 7)

(evlis (aPoint,7) p (push (advise (dispatch setX)) k)) Original behaviour

= ({obj) ,7)~ (Ao V) (apply (dispatch o setX) /

(push (advise <{exec-method o v))K))

= (METH) =~ (A(m) (apply-advice ADV m o v K))
= (eval (body ADV) [o—0 v—vVv proceed—(A(o v K) (apply-method m o v k))] K)

=> (eval {proceedov) [...])

= (apply-method mo v K))

Pointcuts Modeled as Sub-Cont Identifiers

Pointcuts match sub-continuation structures

(pointcut change ((Point setX)))

NN

(send aPoint setX 7)

Join Points Modeled by Sub-Conts

“Principled points in execution”
join points correspond to sub-continuations

(send aPoint setX 7)

call join point = dispalch sub-continuation

(evlis (aPoint,7) p (push <dis;|>atch setX) K))

= ({obj) ,7)» (A(o V) (apply (dispatch o setX)
(push <{exec-method o v) l())

= (METH) +~ (A(m) (eval (body m) [this—o (ids m)—V] K))

execution join point = execution sub-continuation

field get/set join points ...

Structuring: Applicability Determines
Proceed

efault behaviour

call sub-continuation

ome call join points
apply <<primitive>>
proceed . .
(‘) ore call join points

aspect DisplayUpdating {

smallerChange pointcut+advice pointcut change(Shape s):
/ this(shape) && execution(void Shape+.set*(*));

d | - after(Shape s): change(s) {
pp y { } shape.display.update(s);

}
proceed
pointcut smallerChange(Shape s) :
change(s) && cflow(execution(void Ul.addShape()));
after(Shape s) : smallerChange(s) {
System.error.printin(“Shape added, displayed.”);

change pointcut+advice }}

apply { ... }

Model Abstracts Computations

Well-founded in prog. language theory
Join points = sub-continuation
Advice = procedure-like transform to join point
Pointcuts = sub-continuation identifiers

Abstraction: Control

Pointcuts identify join points
computations delimited by continuations

Interface: Extension/Replacement
Advice captures those computations and
extends/replaces those computations
altering their control structure

AOP Provides a New Kind of Modularity

pomtcut
= kinds of

omputations

restructures
jom pomt
= comput?
replace/extend

adwce
= computation transformation

Characterizing Control

Values are Characterized by Types [cousot
'97; Pierce ’02]

Int Bool — Int
32-bit 2’s-complement closures
Primitives Application
(printf “%d” ...) Passed as argument

+, “ *! /1 =
Passed as argument

Static checking
Safety
Machine-checked compliance to annotated intent
Enables optimizations

Join Points Carry Effects nouweior s9; sabry+ 92; panvy+ 92; .

Exceptions Walk the AST and
May throw division by zero determine
State Throw/Catch
Reads value Read
Mutates value .
Display
Input/Output SetField
Reads file GetField
Writes file Fork
C Exit
oncurrency Wait

Generates new thread

Blocks on visible thread Used in the join point

shadows

Can determine effect type
of join point shadows

Pointcuts Have Merged Join Point Effect
Type
Merger provides opportunity to examine
types

(pointcut change (or (execution (Point setX))
(execution (Line setP1))))

change: mutates(receiver field x)
or mutates(receiver field p1)

Check
Excluded join points with similar effect type?
Were these ones missed?

All the join points have same effect type, except
one?

Was this one accidentally included?

Advice Composes Additional Effects

(pointcut action ...) Logglng' /0
(around action (A args
(write “before: ... ”)

(apply proceed args)))

: Transaction: remove
(pointcut update ...) state
(around update (A args
(let ([saved (get-state)])
(with-handlers (A(exc)
(rollback-state saved))

(apply proceed args)))))

_ _ Asynchronous: add
(pOIﬂtCUt operation) concu rrency

(around operation (A args
(if (fork)
(apply proceed args))))

Effects Compose in Layers [Jones+ 96;
Filinski '99; ...]

Exceptions over State Ta = (1,s)+(a,s)
=>Transaction
State over Concurrency Ta =[a],s

=>Global store
=Atomicity is a potential problem

Concurrency over State Ta =[(a,s)]
=>Thread-local store

Java Ta= ([(1+a)’slocal]’sglobal)
Exceptions over state over concurrency over state

Some Compositions are Wrong

Examples
Transaction over 1O
output cannot be undone
some input cannot be undone

Transaction over Concurrency

Concurrent operations may see incomplete
transaction

Effect checking summarizes behaviour
Enables identifying inconsistent interactions

Some Compositions are Potentially Wrong

Examples:

Concurrency and State
Either order is valid — but which is desired?
Thread-local state
Shared state

Concurrency over 1O

With shared communication channels, reads and writes can
interfere

The programmer knows the intent and needs to
decide

We can provide report to locate trouble spots

Some Correct Interactions may be Flagged Wrong

Example:
Logging in a Transaction
Stderr output in a transactional context?

The checker complains
This is called slack in a type system
Need some work-around

AOP Provides a New Kind of Modularity

pointcut
merges effect
| ypes
join pomt
shado
effect type cxpo’ses
Advice

effect type

Advice Description is Informative

(class Point Shape
(field x)

(class Line Shape
(field p1)
(field p2)

(method getP1 () p1)
(method getP2 () p2)

] (method setP1 (p) (field-set p1 p))
— (method setP2 (p) (field-set p2 p))

change: mutates(receiver field x)
or mutates(receiver field y)
or mutates(receiver field p1)
or mutates(receiver field p2)

(pointcut change (or (execution (Point setX))
(execution (Point setY))
(execution (Line setP1))
(execution (Line setP2)))

(around change (A(o v)
(proceed o v)

)

advice: sequence after
input/output(file: stdout)

Advice Description is Informative

(class Point Shape
(field x)

(class Line Shape
(field p1)
(field p2)

(method getP1 () p1)
(method getP2 () p2)

] (method setP1 (p) (field-set p1 p))
— (method setP2 (p) (field-set p2 p))

(pointcut change (or (execution (Point setX))
(execution (Point setY))
(execution (Line setP1))
(execution (Line setP2)))

(around change (A(o v)
(proceed o v)

)

Observes state changes

Each join point mutates
object-local state

Pointcut abstracts local
-state changes only

Augments state changes

Adds |0 effect to join point
behaviour

Single unconditional _ .
proceed maintains existing
sequential control flow

Advice unconditionally
couples shape state
mutation with display
state updating

Effect Typing for Aspects

Provides summary report of behaviour of
join point shadows
point cuts
advice

Developer can use reports to find
Anomalous join point shadows in pointcuts

Understand composed behaviour of
join point
advice

Related Work

[Rinard '04]
weaves Aspectd code then checks
applies pluggable data-flow and control-flow analyses

MiniMAO [Clifton '05]
distinguish two categories

recommend ‘surround’ to syntactically denote simple
case

[Sihman+ 03]
distinguishes three categories
model-checking

Summary

AOP Provides Modularity over Control

pomtcut
= kinds of

omputations

restructures
jom pomt
= comput?
replace/extend

adwce
= computation transformation

Effect Typing Helps Understand
Composition

pointcut
merges effect
~ ftypes
join pomt
shado
Advice

effect type

Contribution: Semantic Model

Shows how AOP fits naturally within PL theory

No separate artifact required
meta-programs
weavers

Subsumes other models:
first-class context labels [Dantas+ '04]
continuation marks [Dutchyn+ ’06]
weavers [Wand+ '04; Bruns+ '04; Masuhara+ ’03; Clifton '05]
predicate dispatch [Orleans '05]

Clarifies AOP < reflective meta-programming

... What’s Missing?

Intertype declarations

Join points exist in elaboration phase
Declare operation
Override implementation
Create class

Cflow

Makes obvious that cflow adds state and breaks tail calls
Build as a sub-aspect construction

Other meta-programming AOP systems (hyperJ,
composeJ)

Given a precise dynamic semantics
|dentifying sub-continuations is mechanical
Our construction goes through

Future Work

Dynamic aspects modularize control

And associated operations
Just like objects modularize data
And associated operations

Frame Activation Pointcut Aspect)
i) » (getfieldiame o) getfield o4 getfield o

etfield o i setfield o4
dispatch 0.(...) call 0.1(...)

alloc if...) init i...]
mie i) preinitialize if(...)

-~ B ~r B O
YyYyvyyy

Figure 51: Object-Oriented Dynamic Join Points

Category theory?

Future Work

Tantalizing aspects < classes duality

0]0, AO
Base Value Continuation 00 AO

| product | sum Dispatch | Method Constructor
Bundle | Object Instance Order Most-to Most-to

-least -least

Abstract | Class Aspect specific applicable

} sum | product Static Super Proceed
Structure | Inheritance | ? Structure

Gives framework for understanding
the kinds of manipulations that AOP

enables

Future Work

What annotations can scale-up aspect

CheCking? aspect Atomic {
pointcut operation() : ...;
S h Owed tra Cta b I e Io@ encapsulateq state mutations disjoint from threads’
Want practical '}';Stfr‘:,“;’r‘l'c‘;‘éﬁii"°""{
AspectJ? }

What optimizations can aspect effect
-checking enable?
Related to effect hierarchy [Toimach '04]

What about other effect taxonomies?
[Thielecke 04]

Future Work

aspect Barrier {

aspect ThreadSafety {

aspect Asynchronous {

aspect Logging {

aspect Transaction {

Power of the Abstraction

Cw : C#*+ join
calculus

Their additions can

be characterized by
two abstract aspects

Asynchronicity
Barriers (Chords)

Aspects are more
general and more
expressive

aspect Barrier {

private final int lastN = ..;
private List<Thread> waiting = new ...;

pointcut syncAfter(): ...;

... around(): syncAfter() {

... result = proceed ();

if (waiting.size() == lastN) {
for (Thread t : waiting) { t.notify(); }
waiting.clear();

}else {
Thread t = Thread.currentThread();
waiting.add(t);
t.wait();

}

return result;

} | aspect Asynchronous {

pointcut operation(): ...;

void around(): operation() {
new Thread(new Runnable() {
public void run() {
proceed(); }}).run();

}
}

Discussion

Questions?

Supporting Slides

Other Analyses — Rinard+

[Rinard '04] weaves Aspectd code, then
checks
DFA identifies state interactions
Orthogonal = aspect and base have independent

state

Independent = aspect doesn’t read base
mutable state

Observational = aspect reads base mutable state
Actuation = aspect writes into base immutable
state

Interference = both write into each others state

Other Analyses — Rinard+

[Rinard '04] weaves Aspectd code, then
checks

CFA identifies control interactions

Augmentative = state effect, always proceeds
Narrowing = conditional single proceed
Replacement = unconditional no proceed

Combinational = all other

Other Analyses — Clifton+, Katz+

[Clifton "05] MinIMOA distinguishes
Spectators ~ observational and augmentative
Can be ignored for (some) code understanding
Assistants ~ all else
Require them to documented in the affected module

[Katz+ '04] model-checks woven code to
identify
Spectative ~ observational and augmentative

Regulative ~ observational and narrowing
/replacement

Invasive ~ interference and/or combinational

The End

Really!

University of Saskatchewan

Software Research Lab
N MW

a__an

