
Christopher Dutchyn
University of Saskatchewan

DCC Chile

Specializing Continuations

a Model for Dynamic Join Points

DCC Chile

actually: What is an Aspect?

•  Give examples
•  Distribution / tracing / instrumentation / …

•  Give implementations
•  It’s what AspectJ (and any number of others) do

•  … lead to poor insight regarding
– what aspects are good for
– how to best use them

DCC Chile

The key is Modularity

•  So the question is

What do aspects modularize?

DCC Chile

In general: crosscutting concerns

•  Static aspects
– Open classes

•  Composition filters
•  Object graph traversal (Demeter)
•  Dynamic join points, pointcuts, and advice

•  Space is too large for a coherent answer

DCC Chile

Modeling Dynamic Aspects

•  Join points
–  “principled points in the execution”

•  Pointcuts
–  “a means of identifying join points”

•  Advice
–  “a means of affecting the semantics at those join

 points”

DCC Chile

Two Interacting Abstractions: Join point and Advice

[p proc(x) (if (call = 0 x)
 (raise zero)
 1)]

(begin (call p 1)
 (call p 2))

[a advise (exec p v)
 (try (proceed v)
 (catch zero ...))]

Advice

Join
 point

DCC Chile

Third Abstraction: Pointcut

[p proc(x) (if (call = 0 x)
 (raise zero)
 1)]

(begin (call p 1)
 (call p 2))

[a advise (exec p v)
 (try (proceed v)
 (catch zero ...))]

Join
 point

Advice

Pointcut

DCC Chile

Interaction Between Pointcut and Advice

[p proc(x) (if (call = 0 x)
 (raise zero)
 1)]

(begin (call p 1)
 (call p 2))

[a advise (exec p v)
 (try (proceed v)
 (catch zero ...))]

Join
 point

Advice

Pointcut

DCC Chile

Idea
•  A model of

•  dynamic join points,
•  pointcuts,
•  and advice,

based on a continuation-passing style interpreter,

•  provides a fundamental account of these AOP
 mechanisms.

DCC Chile

Without Continuations

(define (f x)
 do-stuff
 (g x)
 do-more-stuff)

(define (g x) ...)
do-stuff

call g

do-more-stuff

...

do-stuff

call g

do-more-stuff

...

DCC Chile

Continuations [Strachey’67, Landin’68,…]

(define (f x)
 do-stuff
 (g x)
 do-more-stuff)

(define (g x) ...)
do-stuff

call g

...

do-stuff

call g

do-more-stuff

...

DCC Chile

Model Development

•  Begin with big-step semantics
– definition of values, expressions
– semantic definition of eval

•  Apply CPS transformation
– yields continuations (as lambdas)
– generates definition of apply

•  Defunctionalize
– yields identifiable frames in continuation structure

introduces auxiliary

 continuations

yields frame structures

DCC Chile

Defunctionalization [Reynolds ’98, Ager+ ’03]

•  Procedures have structure
–  identifiers (argument names)
– environment
– expression (machine code)

•  Continuations as escape procedures
– have simple list/tree structure

•  fixed identifiers (next-continuation, argument)
•  predetermined environment
•  given semantics involving one operation

DCC Chile

PROC Language

•  Functions
– 1st order, 2nd class

•  Globals

•  Standard syntax elements
–  If
– Application
– Primitives

DCC Chile

Continuation Frames
Auxiliary

•  facilitate eval regime
–  eager vs lazy

•  testF -- if
•  randF -- args
•  konsF -- args
•  rhsF -- set

Non-auxiliary
•  Carry essential

 semantics of language

•  getF
•  setF
•  callF
•  execF

DCC Chile

Insight … Principle

Insight: frames align with dynamic join points

Principle:
 A dynamic join point is modeled as a state in
 the interpreter where values are applied to
 non-auxiliary continuation frames.

DCC Chile

Pointcuts -- identify frames

• callC
– convert a procedure name to a procedure value

•  NB: accepts an internal value: an identifier
–  then continue to execF

• execC
– accept arguments and execute procedure

• getC
– accept global location and provide its value

• setC
– accept global location and update its value

DCC Chile

Pointcuts - combinators

• and
• or
• not

DCC Chile

Matching

•  Take a pointcut, value and frame
•  Capture

– necessary context values

•  Yields function to replace frame and value

– Bind in a user-parameterized reflective monad
•  Mendhekar and Friedman

DCC Chile

(define (match-pc c v f)
 ;:(pcut × val × frm) → match
 (cond ;…other cases omitted
 [(and (callC? c) (callF? f)
 (eq? (callC-pid c) (callF-id f)))
 (make-match (callC-ids c)
 v
 (lambda (nv)
 (values nv f)))]
 [(and (execC? c) (execF? f)
 (eq? (lookup-proc (execC-pid c)) v))
 (make-match (execC-ids c)
 (execF-args f)
 (lambda (nv)
 (values v (make-execF nv)))))]

DCC Chile

Wrinkle: cflowbelow pointcut

•  identifies join points based on control-flow
 context

•  tail-call optimization discards context

•  recovering context
1) keep all of it
2) preserve needed structure [CC’03]

•  dynamically threaded stack data structure
•  or state effect

DCC Chile

cflowabove pointcut

•  Adds to ability to bound the context search
 from above

• within
– Exclude subordinate procedure calls

• enclosingexecution
– Stop at the next higher calling scope

•  Not strictly necessary, but expressive

DCC Chile

Weaving is dispatch
(define (((adv-step advs) f k) v)
 ;:adv∗ → (frm × cont) → !val
 (let loop ([advs advs])
 (cond [(null? advs) ((base-step f k) v)]
 [(match-pc (caar advs) v f) =>
 (lambda (m)
 (eval (cdar advs)
 (extend-env ‘(%proceed
 %advs .
 ,(match-ids m))
 ‘(,(match-prcd m)
 ,(cdr advs) .
 ,(match-vals m))
 empty-env)
 k))]

 [else (loop (cdr advs))])))

DCC Chile

Model Accounts for Observation

•  Our account requires a new join point
– We needed a new continuation frame

•  advF

•  Arises naturally in the model
– Rather than adding (without explanation)

•  AspectJ
•  And others

DCC Chile

Fundamental Construction
– continuations arise naturally in big-step to small

-step translation
–  frames arise mechanically in defunctionalization

 of continuations

•  no new language construct required
•  no continuation marks [Dutchyn, Tucker, Krishnamurthi]
•  no context labels [Dantas, Walker, Washburn, Weirich]
•  no rewrite points [Aßmann, Ludwig]
•  no awkward thunks [Wand, Kiczales, Dutchyn]
•  no predicate dispatch [Orleans]

DCC Chile

Dynamic Semantic Model

•  Distills other descriptions to essentials
–  continuation marks
–  context labels
–  thunks

•  Key insight: dynamic join points, pointcuts and advice
–  provide mechanism to modularize and specialize control structure

Abstraction Model Element Interaction

join point frame activation dispatch
advice behaviour specification

dispatch
 table pointcut frame identifier

DCC Chile

Elegant, Evocative Model

•  based on a fundamental language construct

•  pointcuts align well with existing AOP
 languages
– adds cflowabove for simpler coding
– explains provinence of adviceexecution

•  clarifies relationship of DJP and reflection

•  framework for understanding that dynamic
 aspects modularize control structure

DCC Chile

Future Directions

•  Object - Aspect Duality
– Dynamic aspects modularize control (and

 associated operations)
•  Just as object modularize data (and associated

 operations)

•  Category theory?

DCC Chile

Future Directions

•  Reflective Monads
– Within the continuation monad

•  identify and operate on the continuation and value
– á la Mendhekar & Friedman and Filinski

– Lost “chapter 3a” of my dissertation

DCC Chile

Future Directions

•  Typing Aspects -- abstract control types
– Value typing (mundane PE) isn’t enough

•  Must abstract the control restructuring too

– Rinard et al., Katz et al., and others

•  Second half of my dissertation
– But, more sophisticated

•  Take polarized logic from Shan
•  And effect typing from many others

DCC Chile

Future Directions

•  Static Aspects
–  Introduce an account of phase separation

•  Elaboration vs. execution
– Continuations in elaboration

= static join points?

– Masuhara and Kiczales (ECOOP 2003)

DCC Chile

Discussion

