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> Basic Misconceptions
• Scheme is a cleaned-up version of all Lisps.

➡ Common Lisp is the newer dialect!

➡ The Evolution of Lisp (Steele and Gabriel)
www.dreamsongs.com/Essays.html

• Common Lisp is slow.

➡ Advanced, mature compilers.

• Common Lisp is not standard.

➡ ANSI standard (first ever for an OOPL!)

• Common Lisp is dead.

➡ Web applications, games, home appliances, 
and many more. 5
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> History
• 1956: McCarthy’s LISt Processing language, for 

symbolic data processing.

• 1975: “Scheme – An Interpreter for Extended 
Lambda Calculus” (Sussman, Steele)

• 1976-1980: ‘Lambda Papers’ (Sussman, Steele)

➡
No amount of language design can force a 
programmer to write clear programs. [...] The 
emphasis should not be on eliminating ‘bad’ 
language constructs, but on discovering or inventing 
helpful ones.
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> History

• 1982: “An Overview of Common LISP” (Steele et al.)

• 1984: “Common Lisp the Language” (Steele et al.)
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> CL’s First Goals

• Commonality among Lisp dialects

• Portability for “a broad class of machines”

• Consistency across interpreter & compilers

• Expressiveness based on experience

• Compatibility with previous Lisp dialects

• Efficiency: possibility to build optimizing compilers

• Stability: only “slow” changes to the language

8
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> CL’s First Non-Goals

• Graphics

• Multiprocessing

• Object-oriented programming
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> History

• 1989: “Common Lisp the Language, 2nd Edition”
(Steele et al.)

➡
There are now many implementations of Common 
Lisp [...]. What is more, all the goals [...] have been 
achieved, most notably that of portability. Moving 
large bodies of Lisp code from one computer to 
another is now routine.
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> Further History

• Lisp Machines (80s)

• IEEE Scheme (1990)

• ANSI Common Lisp (1996)

- 1100 pages describing 1000 funcs and vars

• ISO ISLISP (1997, mostly a CL subset)

• R5RS (1998, macros now officially supported)

• R6RS (2007)
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Philosophy
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> Scheme Philosophy
• Focus on simplicity and homogeneity.

➡ Occam’s Razor
when there are two explanations for the same 
phenomenon, then the explanation which uses the 
smallest number of assumptions and concepts must 
be the right one

• Single paradigm. 

- “everything is a lambda expression”

• Advocates functional programming

- side effects should be marked with a bang (!)
13
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> CL Philosophy
• Focus on expresiveness, pragmatics and efficiency.

• CL integrates the OOP, FP and IP paradigms.

• IP: assignment, iteration, go.

• FP: lexical closures, first-class functions.

• IP & FP: many functions come both with and 
without side effects.

cons & push
adjoin & pushnew
remove & delete
reverse & nreverse
etc.
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4
Pragmatics
1. Truth and falsity
2. Evaluation order
3. Lisp-1 vs. Lisp-2
4. Lambda lists
5. Generalised asignment

Control flow
6. Loop
7. Throw / catch
8. Conditions

Efficiency & correctness
9. Type system

Large scale
10. Dynamic scoping
11. Packages
12. CLOS

Meta & extensibility
13. Macros
14. MOP

Abstractions
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> Truth and Falsehood

• Scheme

- #t and every non-#f value vs. #f

- predicates end in “?”

• Common Lisp

- t and every non-nil value vs. nil

- predicates usually end in “p” or “-p”

- notable exceptions: eq, eql, equal

17
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> Truth and Falsehood

• CL:
(cdr (assoc key alist))

• Scheme:
(let ((val (assq key a-list)))
    (cond ((not (null? val)) (cdr val))
             (else nil)))

• Ballad Dedicated to the Growth of Programs
(Google for it)
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> Evaluation Orders

• In Scheme, (+ i j k) may be evaluated in any order

• this is specified

• so never say: (+ i (set! i (+ i 1)))

• In CL, things are evaluated left to right.

• specified in all useful cases

• so (+ i (setf i (+ i 1))) is well defined.

19
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> Iteration vs. Recursion

• Scheme: proper tail recursion.

• CL: no requirements, but usually optional tail 
recursion elimination.

(proclaim '(optimize speed))

• Scheme: do, named let

• CL: do, do*, dolist, dotimes, loop

20
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> Special Variables

• In CL, all global variables are dynamically scoped 
(“special variables”).

• (Note: not the functions!)

• Dynamic scope: global scope + dynamic extent.

• By convention, names are marked with *

➡ *package*  *features*  *print-base*

21
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> Symbols

• Symbolic computation is the kind of 
programming that relies on a symbol data type.

• Symbols are central to all Lisp dialects.

• Common Lisp has advanced facilities to work with 
symbols.

22
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> Packages

• Packages are containers for symbols, used as 
namespaces or “shared vocabularies”.

• Packages help avoiding name pollution and clashes.

• The CL reader uses packages to translate the 
literal names it finds into symbols.
    (find-symbol "CAR" "CL") ➞ 'car
    (find-symbol "CAr" "CL") ➞ nil

• Symbols can be internal, external or inherited.

• So we don’t export functions etc., but symbols.

23
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> Symbol Literals

• Unqualified (current package)

➡ foo, Foo, FoO, FOO

• Qualified

➡ External – acme:foo

➡ Internal – acme::foo

➡ Keywords – :foo keyword:foo

(eq ':foo :foo) ➞ T

➡ Uninterned – #:foo
(eq '#:foo '#:foo) ➞ NIL

24
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> Packages: How it Works

• (in-package “BANK”)
(export 'withdraw)
(defun withdraw (x) ...)

• Allows other packages to say:
(bank:withdraw 500)

• Or:
(use-package “BANK”)
(withdraw 500)

25
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> Packages: Utilities

(defpackage bank
    (:documentation “Sample package”)
    (:use common-lisp)
    (:export withdraw deposit consult ...))

26
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> Lisp-1 vs. Lisp-2

• In Scheme, a symbol may be bound to a value, and 
functions in particular are values.

• In CL, functions and values have different 
namespaces. In a form,

- car position is interpreted in function space

- cdr positions are interpreted in value space

• So you can say (flet ((fun (x) (1+ x)))
                          (let ((fun 42))
                              (fun fun)))

27
Tuesday 23 June 2009



> Lisp-1 vs. Lisp-2

• There are accessors for each namespace:

- (symbol-function 'fun) or #'fun or (function fun)

- (symbol-value 'fun) or fun

• Call functional values as:
(fun 42) or (funcall #'fun 42) or (apply #'fun (list 42))
Functions are first-class just like in Scheme

28
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> Why Lisp-1?

• Homogeneity: let all positions in a form be 
evaluated the same.  You can say (((f x) y) z)

• Avoid having separate binding manipulation 
constructs for each namespace.

- CL:
let / flet
boundp / fboundp
symbol-value / symbol-function
defun / defvar

29
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> But why Lisp-2?

• In practice, having the possibility of reusing names 
for functions and variables is very handy.

- No need to prepend ‘get-’ to getters

(let ((age (age person)))
   (+ age 10))

• Lisp-2 is practical.  About 80% of CL programmers 
use it.

30
Tuesday 23 June 2009

http://xach.livejournal.com/220305.html
http://xach.livejournal.com/220305.html


> Lambda Lists

• CL's parameter lists provide a convenient solution 
to several common coding problems.

31
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>Λ Lists: Optional Args

• CL: (defun foo (a b &optional (c 0) d)
          (list a b c d))

      (foo 1 2)       ➞ (1 2 0 NIL)
      (foo 1 2 3)    ➞ (1 2 3 NIL)
      (foo 1 2 3 4) ➞ (1 2 3 4)

32
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>Λ Lists: Variable Arity

• Scheme:
(define (format ctrl-string . objects) ...)
(define (+ . numbers) ...)

• CL:
(defun format (stream string &rest values) ...)
(defun + (&rest numbers) ...)

33
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>Λ Lists: Keyword Args

34

(defun find (item list &key (test #'eql) (key #'identity)) ...)

(find “Karl” *list-of-persons*
         :key #'person-name
         :test #'string=)
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>Λ Lists: Keyword Args (L2R)

35

(defun withdraw (...) ...)

   ...
   (flet ((withdraw (&rest args
                            &key amount
                            &allow-other-keys)
               (if (> amount 100000)
                   (apply #'withdraw :amount 100000 args)
                   (apply #'withdraw args))))
       ...)
   ...
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> Lambda Lists

• &rest, &body                      rest parameters

• &optional                           optional parameters

• &key, &allow-other-keys      keyword parameters

• &environment                    lexical environment

• &aux                                 local variables

• &whole                             the whole form

36
Tuesday 23 June 2009



> Generalised Asignment
• ...or “generalized references”

• like “:=” or “=” in Algol-style languages,
with arbitrary left-hand sides

• (setf (some-form ...) (some-value ...))

• predefined acceptable forms for left-hand sides
+ framework for user-defined forms

37

Python CL
x = 10 (setf x 10)

a[0] = 10 (setf (aref a 0) 10)
hash['key'] = 10 (setf (gethash 'key hash) 10)

o.field = 10 (setf (field o) 10)
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> Generalised Assignment

• Earlier dialects of Lisp would often have pairs of 
functions for reading and writing data.

• The setf macro improves CL’s orthogonality.

• In CL there are only “getters”, and setters come 
for free.

• (age person) ➞ 32

• (setf (age person) 42) ➞ 42

38
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> Assignment Functions

• (defun make-cell (value) (vector value))

(defun cell-value (cell) (svref cell 0))

(defun (setf cell-value) (value cell)
   (setf (svref cell 0) value))

• (setf (cell-value some-cell) 42)

• macros also supported

39
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> Type System

• A type is a possibly infinite set of objects.

• CL allows optional declaration of types.
(declaim (type integer *my-counter*)) 
(declare (integer x y z))
(the integer (* x y))

• Usually, CL implementations take type declarations 
as a promise for code optimization.

• Creation of new types: deftype, defstruct, defclass, 
define-condition.

40
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> Type System

Type queries

• (type-of 1) ➞ 'bit

• (type-of 2) ➞ '(integer 0 536870911)

• (type-of "hola") ➞ (simple-array character (4))

• (typep 3 '(integer 0 2)) ➞ nil

• (typep 'a '(and symbol (not null))) ➞ t

• (subtypep 'integer 'number) ➞ t

41
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> Finally

• CL defines a large number of predefined data 
structures and operations:

CLOS, structures, conditions, numerical 
tower, extensible characters, optionally typed 
arrays, multidimensional arrays, hash tables, 
filenames, streams, printer, reader.

• Apart from these differences, Scheme and 
Common Lisp are almost the same. ;)

42
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CLOS

5

the common lisp 
object system
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> Class-based OOP

44

class OutputStream {
   void println(Object obj) { ... }
   ...
}

out.println(pascal);
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> ...in Lisp syntax...

45

out.println(pascal);

(send out ‘println pascal)
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>

(call receiver message args ...)

(call message receiver args ...)

(call message all-args ...)

...the receiver is just 
                another argument...

46
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>

(call message args ...)

(message args ...)

...“call” is redundant...

47
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>

out.println(pascal);

(println out pascal)

...so now we have
         generic functions!

48
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> Classes

49

(defclass person (standard-object)
    ((name :accessor person-name
               :initarg :name)
     (address :accessor person-address
                  :initarg :address))
    (:documentation "Basic person."))
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> Classes and Superclasses

50

(defclass person (standard-object)
    ((name :accessor person-name
               :initarg :name)
     (address :accessor person-address
                  :initarg :address))
    (:documentation "Basic person."))
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> Slots and Options

51

(defclass person (standard-object)
    ((name :accessor person-name
               :initarg :name)
     (address :accessor person-address
                  :initarg :address))
    (:documentation "Basic person."))
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> Class Options

52

(defclass person (standard-object)
    ((name :accessor person-name
               :initarg :name)
     (address :accessor person-address
                  :initarg :address))
    (:documentation "Basic person."))
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> Instances & Accessors

53

(defclass person (standard-object)
    ((name :accessor person-name :initarg :name)
     (address :accessor person-address :initarg :address))
    (:documentation "Basic person."))

(defparameter *dilbert*
   (make-instance 'person :name "Dilbert" :address "Brussels"))

(person-name *dilbert*) ➞ "Dilbert"
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> Generic Functions

54

• Invented when Lispers implemented OOP. 

• Generic functions were already needed.
Mathematical operations are generic!
They work on ints, floats, complex, etc.

(defgeneric + (x y)
   :documentation “returns the sum of x and y”)
(defmethod + ((x int) (y int)) ...)
(defmethod + ((x float) (y float)) ...)
(defmethod + ((x complex) (y complex)) ...)
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> Generic Functions

55

• Methods belong to the generic function.

• The GF is responsible for determining what method(s) 
to run in response to a particular invocation.

➡ Multiple dispatch: consider all the arguments when 
selecting applicable and most specific methods.

➡ Advice: add qualified methods that are called 
before, after or around everything else.
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> Inheritance

• (defgeneric display (object))

• (defmethod display ((object person))
   (print (person-name object))
   (print (person-address object)))

• (defclass employee (person)
   ((employer :accessor person-employer
                    :initarg :employer)))

• (defmethod display ((object employee))
   (call-next-method)
   (display (person-employer object)))

56
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> GFs & Methods

• (defmethod display ((object person))
    ...)

• (defmethod display :before ((object person))
    ...)

• Standard method combination allows for
primary, :before, :after and :around methods.

57
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> GFs & Methods

• (defgeneric display (object)
   (:method-combination progn :most-specific-last))

• (defmethod display progn ((object person))
   (print (person-name object))
   (print (person-address object)))

• (defmethod display progn ((object employee))
   (print (person-employer object)))

58
Tuesday 23 June 2009



>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
  public boolean equals(Person other) {
    this.name().equals(other.name());
} }

public class Object {
  public boolean equals(Object other) {
    return this == other;
} }
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>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
  public boolean equals(Person other) {
    this.name().equals(other.name());
} }

public class Object {
  public boolean equals(Object other) {
    return this == other;
} }

false
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>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
  public boolean equals(Person other) {
    this.name().equals(other.name());
} }

public class Object {
  public boolean equals(Object other) {
    return this == other;
} }

Object

false
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>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
  public boolean equals(Person other) {
    this.name().equals(other.name());
} }

public class Object {
  public boolean equals(Object other) {
    return this == other;
} }

Object

false
dynamic method binding 
based on receiver only
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>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch
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>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch

bash$ java Main A

Tuesday 23 June 2009



>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch

“A/A”bash$ java Main A
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>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch

“A/A”
bash$ java Main B
bash$ java Main A
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>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch

“A/A”
“B/A”bash$ java Main B

bash$ java Main A
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>
public class A {
  public void foo(A a) { System.out.println("A/A"); }
  public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
  public void foo(A a) { System.out.println("B/A"); }
  public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?
 

public class Main {
  public static void main(String[] argv) {
    A obj = argv[0].equals("A") ? new A() : new B();
    obj.foo(obj);
} }

Single Dispatch

“A/A”
“B/A”bash$ java Main B

bash$ java Main A
“B/B”
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> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:
 

(defun test (class)
   (let ((obj (make-instance class)))
      (foo obj obj)))
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> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:
 

(defun test (class)
   (let ((obj (make-instance class)))
      (foo obj obj)))

(test ‘a)
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> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:
 

(defun test (class)
   (let ((obj (make-instance class)))
      (foo obj obj)))

“A/A”(test ‘a)
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> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:
 

(defun test (class)
   (let ((obj (make-instance class)))
      (foo obj obj)))

“A/A”
(test ‘b)
(test ‘a)
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> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:
 

(defun test (class)
   (let ((obj (make-instance class)))
      (foo obj obj)))

“A/A”
(test ‘b)
(test ‘a)

“B/B”
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Concluding
Remarks

*
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> Greenspun’s Tenth Rule

“Any sufficiently complicated C or Fortran program 
contains an ad-hoc, informally-specified bug-ridden 
slow implementation of half of Common Lisp.”

63
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> Important Literature

• Peter Norvig, Paradigms of Artificial Intelligence 
Programming (PAIP)
- CL’s SICP

• Paul Graham, On Lisp - the book about macros
(out of print, but see www.paulgraham.com)

• Peter Seibel, Practical Common Lisp, 2005,
www.gigamonkeys.com/book

64
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> Important Literature

• Guy Steele, Common Lisp The Language,
2nd Edition (CLtL2 - pre-ANSI!)

• HyperSpec, (ANSI standard), Google for it!

• Pascal’s highly opinionated guide
http://p-cos.net/lisp/guide.html

• ISLISP: www.islisp.info
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