
 Common Lisp
Essentials

Sebastián González
23 June 2009

for Scheme
programmers

Tuesday 23 June 2009

with many thanks to Dr. Pascal Costanza

Tuesday 23 June 2009

Agenda
Language culture

1. History
2. Philosophy
3. Community

Language abstractions
4. Lisp-1 vs. Lisp-2
5. Lambda lists
6. Packages
7. Gen. assignment
8. Type system

Language extensions
9. Object system

Tuesday 23 June 2009

History

1

Tuesday 23 June 2009

> Basic Misconceptions
• Scheme is a cleaned-up version of all Lisps.

➡ Common Lisp is the newer dialect!

➡ The Evolution of Lisp (Steele and Gabriel)
www.dreamsongs.com/Essays.html

• Common Lisp is slow.

➡ Advanced, mature compilers.

• Common Lisp is not standard.

➡ ANSI standard (first ever for an OOPL!)

• Common Lisp is dead.

➡ Web applications, games, home appliances,
and many more. 5

Tuesday 23 June 2009

http://www.dreamsongs.com/Essays.html
http://www.dreamsongs.com/Essays.html

> History
• 1956: McCarthy’s LISt Processing language, for

symbolic data processing.

• 1975: “Scheme – An Interpreter for Extended
Lambda Calculus” (Sussman, Steele)

• 1976-1980: ‘Lambda Papers’ (Sussman, Steele)

➡
No amount of language design can force a
programmer to write clear programs. [...] The
emphasis should not be on eliminating ‘bad’
language constructs, but on discovering or inventing
helpful ones.

6
Tuesday 23 June 2009

> History

• 1982: “An Overview of Common LISP” (Steele et al.)

• 1984: “Common Lisp the Language” (Steele et al.)

7
Tuesday 23 June 2009

> CL’s First Goals

• Commonality among Lisp dialects

• Portability for “a broad class of machines”

• Consistency across interpreter & compilers

• Expressiveness based on experience

• Compatibility with previous Lisp dialects

• Efficiency: possibility to build optimizing compilers

• Stability: only “slow” changes to the language

8
Tuesday 23 June 2009

> CL’s First Non-Goals

• Graphics

• Multiprocessing

• Object-oriented programming

9
Tuesday 23 June 2009

> History

• 1989: “Common Lisp the Language, 2nd Edition”
(Steele et al.)

➡
There are now many implementations of Common
Lisp [...]. What is more, all the goals [...] have been
achieved, most notably that of portability. Moving
large bodies of Lisp code from one computer to
another is now routine.

10
Tuesday 23 June 2009

> Further History

• Lisp Machines (80s)

• IEEE Scheme (1990)

• ANSI Common Lisp (1996)

- 1100 pages describing 1000 funcs and vars

• ISO ISLISP (1997, mostly a CL subset)

• R5RS (1998, macros now officially supported)

• R6RS (2007)

11
Tuesday 23 June 2009

Philosophy

2

Tuesday 23 June 2009

> Scheme Philosophy
• Focus on simplicity and homogeneity.

➡ Occam’s Razor
when there are two explanations for the same
phenomenon, then the explanation which uses the
smallest number of assumptions and concepts must
be the right one

• Single paradigm.

- “everything is a lambda expression”

• Advocates functional programming

- side effects should be marked with a bang (!)
13

Tuesday 23 June 2009

> CL Philosophy
• Focus on expresiveness, pragmatics and efficiency.

• CL integrates the OOP, FP and IP paradigms.

• IP: assignment, iteration, go.

• FP: lexical closures, first-class functions.

• IP & FP: many functions come both with and
without side effects.

cons & push
adjoin & pushnew
remove & delete
reverse & nreverse
etc.

14
Tuesday 23 June 2009

Community

3

Tuesday 23 June 2009

4
Pragmatics
1. Truth and falsity
2. Evaluation order
3. Lisp-1 vs. Lisp-2
4. Lambda lists
5. Generalised asignment

Control flow
6. Loop
7. Throw / catch
8. Conditions

Efficiency & correctness
9. Type system

Large scale
10. Dynamic scoping
11. Packages
12. CLOS

Meta & extensibility
13. Macros
14. MOP

Abstractions

Tuesday 23 June 2009

> Truth and Falsehood

• Scheme

- #t and every non-#f value vs. #f

- predicates end in “?”

• Common Lisp

- t and every non-nil value vs. nil

- predicates usually end in “p” or “-p”

- notable exceptions: eq, eql, equal

17
Tuesday 23 June 2009

> Truth and Falsehood

• CL:
(cdr (assoc key alist))

• Scheme:
(let ((val (assq key a-list)))
 (cond ((not (null? val)) (cdr val))
 (else nil)))

• Ballad Dedicated to the Growth of Programs
(Google for it)

18
Tuesday 23 June 2009

> Evaluation Orders

• In Scheme, (+ i j k) may be evaluated in any order

• this is specified

• so never say: (+ i (set! i (+ i 1)))

• In CL, things are evaluated left to right.

• specified in all useful cases

• so (+ i (setf i (+ i 1))) is well defined.

19
Tuesday 23 June 2009

> Iteration vs. Recursion

• Scheme: proper tail recursion.

• CL: no requirements, but usually optional tail
recursion elimination.

(proclaim '(optimize speed))

• Scheme: do, named let

• CL: do, do*, dolist, dotimes, loop

20
Tuesday 23 June 2009

> Special Variables

• In CL, all global variables are dynamically scoped
(“special variables”).

• (Note: not the functions!)

• Dynamic scope: global scope + dynamic extent.

• By convention, names are marked with *

➡ *package* *features* *print-base*

21
Tuesday 23 June 2009

> Symbols

• Symbolic computation is the kind of
programming that relies on a symbol data type.

• Symbols are central to all Lisp dialects.

• Common Lisp has advanced facilities to work with
symbols.

22
Tuesday 23 June 2009

> Packages

• Packages are containers for symbols, used as
namespaces or “shared vocabularies”.

• Packages help avoiding name pollution and clashes.

• The CL reader uses packages to translate the
literal names it finds into symbols.
 (find-symbol "CAR" "CL") ➞ 'car
 (find-symbol "CAr" "CL") ➞ nil

• Symbols can be internal, external or inherited.

• So we don’t export functions etc., but symbols.

23
Tuesday 23 June 2009

> Symbol Literals

• Unqualified (current package)

➡ foo, Foo, FoO, FOO

• Qualified

➡ External – acme:foo

➡ Internal – acme::foo

➡ Keywords – :foo keyword:foo

(eq ':foo :foo) ➞ T

➡ Uninterned – #:foo
(eq '#:foo '#:foo) ➞ NIL

24
Tuesday 23 June 2009

> Packages: How it Works

• (in-package “BANK”)
(export 'withdraw)
(defun withdraw (x) ...)

• Allows other packages to say:
(bank:withdraw 500)

• Or:
(use-package “BANK”)
(withdraw 500)

25
Tuesday 23 June 2009

> Packages: Utilities

(defpackage bank
 (:documentation “Sample package”)
 (:use common-lisp)
 (:export withdraw deposit consult ...))

26
Tuesday 23 June 2009

> Lisp-1 vs. Lisp-2

• In Scheme, a symbol may be bound to a value, and
functions in particular are values.

• In CL, functions and values have different
namespaces. In a form,

- car position is interpreted in function space

- cdr positions are interpreted in value space

• So you can say (flet ((fun (x) (1+ x)))
 (let ((fun 42))
 (fun fun)))

27
Tuesday 23 June 2009

> Lisp-1 vs. Lisp-2

• There are accessors for each namespace:

- (symbol-function 'fun) or #'fun or (function fun)

- (symbol-value 'fun) or fun

• Call functional values as:
(fun 42) or (funcall #'fun 42) or (apply #'fun (list 42))
Functions are first-class just like in Scheme

28
Tuesday 23 June 2009

> Why Lisp-1?

• Homogeneity: let all positions in a form be
evaluated the same. You can say (((f x) y) z)

• Avoid having separate binding manipulation
constructs for each namespace.

- CL:
let / flet
boundp / fboundp
symbol-value / symbol-function
defun / defvar

29
Tuesday 23 June 2009

> But why Lisp-2?

• In practice, having the possibility of reusing names
for functions and variables is very handy.

- No need to prepend ‘get-’ to getters

(let ((age (age person)))
 (+ age 10))

• Lisp-2 is practical. About 80% of CL programmers
use it.

30
Tuesday 23 June 2009

http://xach.livejournal.com/220305.html
http://xach.livejournal.com/220305.html

> Lambda Lists

• CL's parameter lists provide a convenient solution
to several common coding problems.

31
Tuesday 23 June 2009

>Λ Lists: Optional Args

• CL: (defun foo (a b &optional (c 0) d)
 (list a b c d))

 (foo 1 2) ➞ (1 2 0 NIL)
 (foo 1 2 3) ➞ (1 2 3 NIL)
 (foo 1 2 3 4) ➞ (1 2 3 4)

32
Tuesday 23 June 2009

>Λ Lists: Variable Arity

• Scheme:
(define (format ctrl-string . objects) ...)
(define (+ . numbers) ...)

• CL:
(defun format (stream string &rest values) ...)
(defun + (&rest numbers) ...)

33
Tuesday 23 June 2009

>Λ Lists: Keyword Args

34

(defun find (item list &key (test #'eql) (key #'identity)) ...)

(find “Karl” *list-of-persons*
 :key #'person-name
 :test #'string=)

Tuesday 23 June 2009

>Λ Lists: Keyword Args (L2R)

35

(defun withdraw (...) ...)

 ...
 (flet ((withdraw (&rest args
 &key amount
 &allow-other-keys)
 (if (> amount 100000)
 (apply #'withdraw :amount 100000 args)
 (apply #'withdraw args))))
 ...)
 ...

Tuesday 23 June 2009

> Lambda Lists

• &rest, &body rest parameters

• &optional optional parameters

• &key, &allow-other-keys keyword parameters

• &environment lexical environment

• &aux local variables

• &whole the whole form

36
Tuesday 23 June 2009

> Generalised Asignment
• ...or “generalized references”

• like “:=” or “=” in Algol-style languages,
with arbitrary left-hand sides

• (setf (some-form ...) (some-value ...))

• predefined acceptable forms for left-hand sides
+ framework for user-defined forms

37

Python CL
x = 10 (setf x 10)

a[0] = 10 (setf (aref a 0) 10)
hash['key'] = 10 (setf (gethash 'key hash) 10)

o.field = 10 (setf (field o) 10)
Tuesday 23 June 2009

> Generalised Assignment

• Earlier dialects of Lisp would often have pairs of
functions for reading and writing data.

• The setf macro improves CL’s orthogonality.

• In CL there are only “getters”, and setters come
for free.

• (age person) ➞ 32

• (setf (age person) 42) ➞ 42

38
Tuesday 23 June 2009

> Assignment Functions

• (defun make-cell (value) (vector value))

(defun cell-value (cell) (svref cell 0))

(defun (setf cell-value) (value cell)
 (setf (svref cell 0) value))

• (setf (cell-value some-cell) 42)

• macros also supported

39
Tuesday 23 June 2009

> Type System

• A type is a possibly infinite set of objects.

• CL allows optional declaration of types.
(declaim (type integer *my-counter*))
(declare (integer x y z))
(the integer (* x y))

• Usually, CL implementations take type declarations
as a promise for code optimization.

• Creation of new types: deftype, defstruct, defclass,
define-condition.

40
Tuesday 23 June 2009

> Type System

Type queries

• (type-of 1) ➞ 'bit

• (type-of 2) ➞ '(integer 0 536870911)

• (type-of "hola") ➞ (simple-array character (4))

• (typep 3 '(integer 0 2)) ➞ nil

• (typep 'a '(and symbol (not null))) ➞ t

• (subtypep 'integer 'number) ➞ t

41
Tuesday 23 June 2009

> Finally

• CL defines a large number of predefined data
structures and operations:

CLOS, structures, conditions, numerical
tower, extensible characters, optionally typed
arrays, multidimensional arrays, hash tables,
filenames, streams, printer, reader.

• Apart from these differences, Scheme and
Common Lisp are almost the same. ;)

42
Tuesday 23 June 2009

CLOS

5

the common lisp
object system

Tuesday 23 June 2009

> Class-based OOP

44

class OutputStream {
 void println(Object obj) { ... }
 ...
}

out.println(pascal);

Tuesday 23 June 2009

> ...in Lisp syntax...

45

out.println(pascal);

(send out ‘println pascal)

Tuesday 23 June 2009

>

(call receiver message args ...)

(call message receiver args ...)

(call message all-args ...)

...the receiver is just
 another argument...

46
Tuesday 23 June 2009

>

(call message args ...)

(message args ...)

...“call” is redundant...

47
Tuesday 23 June 2009

>

out.println(pascal);

(println out pascal)

...so now we have
 generic functions!

48
Tuesday 23 June 2009

> Classes

49

(defclass person (standard-object)
 ((name :accessor person-name
 :initarg :name)
 (address :accessor person-address
 :initarg :address))
 (:documentation "Basic person."))

Tuesday 23 June 2009

> Classes and Superclasses

50

(defclass person (standard-object)
 ((name :accessor person-name
 :initarg :name)
 (address :accessor person-address
 :initarg :address))
 (:documentation "Basic person."))

Tuesday 23 June 2009

> Slots and Options

51

(defclass person (standard-object)
 ((name :accessor person-name
 :initarg :name)
 (address :accessor person-address
 :initarg :address))
 (:documentation "Basic person."))

Tuesday 23 June 2009

> Class Options

52

(defclass person (standard-object)
 ((name :accessor person-name
 :initarg :name)
 (address :accessor person-address
 :initarg :address))
 (:documentation "Basic person."))

Tuesday 23 June 2009

> Instances & Accessors

53

(defclass person (standard-object)
 ((name :accessor person-name :initarg :name)
 (address :accessor person-address :initarg :address))
 (:documentation "Basic person."))

(defparameter *dilbert*
 (make-instance 'person :name "Dilbert" :address "Brussels"))

(person-name *dilbert*) ➞ "Dilbert"

Tuesday 23 June 2009

> Generic Functions

54

• Invented when Lispers implemented OOP.

• Generic functions were already needed.
Mathematical operations are generic!
They work on ints, floats, complex, etc.

(defgeneric + (x y)
 :documentation “returns the sum of x and y”)
(defmethod + ((x int) (y int)) ...)
(defmethod + ((x float) (y float)) ...)
(defmethod + ((x complex) (y complex)) ...)

Tuesday 23 June 2009

> Generic Functions

55

• Methods belong to the generic function.

• The GF is responsible for determining what method(s)
to run in response to a particular invocation.

➡ Multiple dispatch: consider all the arguments when
selecting applicable and most specific methods.

➡ Advice: add qualified methods that are called
before, after or around everything else.

Tuesday 23 June 2009

> Inheritance

• (defgeneric display (object))

• (defmethod display ((object person))
 (print (person-name object))
 (print (person-address object)))

• (defclass employee (person)
 ((employer :accessor person-employer
 :initarg :employer)))

• (defmethod display ((object employee))
 (call-next-method)
 (display (person-employer object)))

56
Tuesday 23 June 2009

> GFs & Methods

• (defmethod display ((object person))
 ...)

• (defmethod display :before ((object person))
 ...)

• Standard method combination allows for
primary, :before, :after and :around methods.

57
Tuesday 23 June 2009

> GFs & Methods

• (defgeneric display (object)
 (:method-combination progn :most-specific-last))

• (defmethod display progn ((object person))
 (print (person-name object))
 (print (person-address object)))

• (defmethod display progn ((object employee))
 (print (person-employer object)))

58
Tuesday 23 June 2009

>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
 public boolean equals(Person other) {
 this.name().equals(other.name());
} }

public class Object {
 public boolean equals(Object other) {
 return this == other;
} }

Tuesday 23 June 2009

>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
 public boolean equals(Person other) {
 this.name().equals(other.name());
} }

public class Object {
 public boolean equals(Object other) {
 return this == other;
} }

false

Tuesday 23 June 2009

>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
 public boolean equals(Person other) {
 this.name().equals(other.name());
} }

public class Object {
 public boolean equals(Object other) {
 return this == other;
} }

Object

false

Tuesday 23 June 2009

>

Now consider:

Object a = new Person(“juan”);

Object b = new Person(“juan”);

a.equals(b)

Single Dispatch

59

public class Person {
 public boolean equals(Person other) {
 this.name().equals(other.name());
} }

public class Object {
 public boolean equals(Object other) {
 return this == other;
} }

Object

false
dynamic method binding
based on receiver only

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

bash$ java Main A

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

“A/A”bash$ java Main A

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

“A/A”
bash$ java Main B
bash$ java Main A

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

“A/A”
“B/A”bash$ java Main B

bash$ java Main A

Tuesday 23 June 2009

>
public class A {
 public void foo(A a) { System.out.println("A/A"); }
 public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
 public void foo(A a) { System.out.println("B/A"); }
 public void foo(B b) { System.out.println("B/B"); }
}

What happens when you run the following main method?

public class Main {
 public static void main(String[] argv) {
 A obj = argv[0].equals("A") ? new A() : new B();
 obj.foo(obj);
} }

Single Dispatch

“A/A”
“B/A”bash$ java Main B

bash$ java Main A
“B/B”

Tuesday 23 June 2009

> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:

(defun test (class)
 (let ((obj (make-instance class)))
 (foo obj obj)))

Tuesday 23 June 2009

> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:

(defun test (class)
 (let ((obj (make-instance class)))
 (foo obj obj)))

(test ‘a)

Tuesday 23 June 2009

> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:

(defun test (class)
 (let ((obj (make-instance class)))
 (foo obj obj)))

“A/A”(test ‘a)

Tuesday 23 June 2009

> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:

(defun test (class)
 (let ((obj (make-instance class)))
 (foo obj obj)))

“A/A”
(test ‘b)
(test ‘a)

Tuesday 23 June 2009

> Multiple Dispatch

61

(defclass A () ())
(defclass B (A) ())

(defmethod foo ((x A) (y A)) (print “A/A”))
(defmethod foo ((x A) (y B)) (print “A/B”))

(defmethod foo ((x B) (y A)) (print “B/A”))
(defmethod foo ((x B) (y B)) (print “B/B”))

If you try:

(defun test (class)
 (let ((obj (make-instance class)))
 (foo obj obj)))

“A/A”
(test ‘b)
(test ‘a)

“B/B”

Tuesday 23 June 2009

Concluding
Remarks

*

Tuesday 23 June 2009

> Greenspun’s Tenth Rule

“Any sufficiently complicated C or Fortran program
contains an ad-hoc, informally-specified bug-ridden
slow implementation of half of Common Lisp.”

63
Tuesday 23 June 2009

> Important Literature

• Peter Norvig, Paradigms of Artificial Intelligence
Programming (PAIP)
- CL’s SICP

• Paul Graham, On Lisp - the book about macros
(out of print, but see www.paulgraham.com)

• Peter Seibel, Practical Common Lisp, 2005,
www.gigamonkeys.com/book

64
Tuesday 23 June 2009

http://www.paulgraham.com
http://www.paulgraham.com
http://www.gigamonkeys.com/book
http://www.gigamonkeys.com/book

> Important Literature

• Guy Steele, Common Lisp The Language,
2nd Edition (CLtL2 - pre-ANSI!)

• HyperSpec, (ANSI standard), Google for it!

• Pascal’s highly opinionated guide
http://p-cos.net/lisp/guide.html

• ISLISP: www.islisp.info

65
Tuesday 23 June 2009

http://www.pascalcostanza.de/lisp/guide.html
http://www.pascalcostanza.de/lisp/guide.html
http://www.islisp.info
http://www.islisp.info

