
Common Lisp
 Macros

Sebastián González
25 June 2009

Common Lisp: the
programmable
programming

language

Thursday 25 June 2009

with many thanks to Pascal Costanza

Thursday 25 June 2009

> Popular Wisdom

• If you give a person a fish, he can eat for a day.

• If you teach a person to fish, he can eat his whole
life long.

• If you give a person tools, he can make a fishing
pole, even build a machine to crank out fishing
poles. In this way he can help other persons to
catch fish.

• How do we achieve this in a language?

3
Thursday 25 June 2009

> Growing a Language
• How to design a language?
➡ Build The Right Thing from the start.
➡ Build a small language.
✓ Start small, and plan for growth.

• Design a language that can be grown by its users.

➡ Expose the tools used to build the language to
users.

➡ Have user-defined constructs look as just one
more part of the language.

• CL: started practical, and was planned for growth.
4

Thursday 25 June 2009

> REPL Computation

5

READ

EVAL

appearance

meaning

side effects
PRINT

let the user participate in all stages of computation
... including the read phase!

Thursday 25 June 2009

> Macros

• This is code: (+ 1 2 3)

• This is data: '(+ 1 2 3)

• A macro is a function that generates code: it takes
code as argument and returns new code.

• The step of building the new expression is called
macroexpansion.

• Macros are used at read time, rather than
evaluation time.

• READ: prase code, and macroexpand.
6

Thursday 25 June 2009

> A Bit of Background

• (let ((a 1) (b 2) (c 3) (d 4))
 (list a b c d))

➞ (1 2 3 4) ; everything is evaluated

• (let ((a 1) (b 2) (c 3) (d 4))
 (list 'a b c d))

➞ (A 2 3 4) ; not everything is evaluated

7
Thursday 25 June 2009

> A Bit of Background

• (let ((a 1) (b 2) (c 3) (d 4))
 (list 'a 'b 'c d))

➞ (A B C 4) ; very little is evaluated

• Here is a more concise way to write this:

(let ((a 1) (b 2) (c 3) (d 4))
 `(a b c ,d))

➞ (A B C 4) ; very little is evaluated

8
Thursday 25 June 2009

> Backquote

• '(a b c d) uses quote

• `(a b c ,d) uses backquote

• backquote allows evaluating parts of an expression
explicitly marked with a comma

• you can’t do this with quote

9
Thursday 25 June 2009

> Backquote

• `(a b c) ↔ '(a b c) ↔ (list 'a 'b 'c)

• `(a ,b c ,d) ↔ (list 'a b 'c d)

• (let ((b 2)) `(a (,b c)))
➞ (A (2 C))

• (let ((a 1) (b 2) (c 3))
 `(a b ,c (',(+ a b c)) (+ a b) 'c '((,a ,b))))
➞ (A B 3 ('6) (+ A B) 'C '((1 2)))

10
Thursday 25 June 2009

> Backquote

• (let ((list '(1 2 3)))
 `(a b ,@list c d))

➞ (a b 1 2 3 c d)

• ,@ splices into the surrounding list
(so there must be a surrounding list!)

11
Thursday 25 June 2009

> Macro Example

• (defun while-fun (predicate thunk)
 (when (funcall predicate)
 (funcall thunk)
 (while-fun predicate thunk)))

• (defmacro while (expression &rest body)
 (list 'while-fun (list 'lambda '() expression)
 (list* 'lambda '() body)))

• Or more aesthetical:
(defmacro while (expression &body body)
 `(while-fun (lambda () ,expression)
 (lambda () ,@body)))

12
Thursday 25 June 2009

> Note

• Backquote is independent from macros.

• (defun greet (name)
 `(hello ,name))

...is a function!

13
Thursday 25 June 2009

> Macro Function in Action

• (funcall (macro-function 'while)
 '(while (< i 10)
 (print (incf i)))
 lex-env)

➞ (while-fun (lambda () (< i 10))
 (lambda ()
 (print (incf i))))

14
Thursday 25 June 2009

> Macro Expansion
(let ((i 0))
 ...
 (while (< i 10)
 (print (incf i))
 ...)
➞
(let ((i 0))
 ...
 (while-fun (lambda () (< i 10))
 (lambda ()
 (print (incf i))))
 ...)

15
Thursday 25 June 2009

> Why Macros?

• Question: why not just say this?

(while (lambda () (< i 10))
 (lambda () (print (incf i))))

16
Thursday 25 June 2009

> Syntactic Abstractions

• The while function leaks: you need to know
details about its implementation.

• That is, the fact that it uses closures.

• The Law of Leaky Abstractions (Joel Spolsky)

• Leaky abstraction: an abstraction that exposes
(“leaks”) details it is supposed to be abstracting
away.

17

(while (lambda () (< i 10)))
 (lambda () (print (incf i))))

Thursday 25 June 2009

> Alternative
Implementations

• (defmacro while (expression &body body)
 `(do () ((not ,expression)) ,@body))

• (defmacro while (expression &body body)
 `(tagbody
 start
 (unless ,expression (go end))
 ,@body
 (go start)
 end))

18
Thursday 25 June 2009

> Abstractions

• Syntactic abstractions hide implementation details,
just like functional abstractions.

• Hiding implementation details allows you to
change your mind later on.

• It also allows the users of your library to think
purely in terms of what they care about.

19
Thursday 25 June 2009

> Abstractions

• (while-fun (lambda () (< i 10))
 (lambda ()
 (print (incf i))))

vs.

(while (< i 10)
 (print (incf i)))

• Macros allow user-defined syntactic abstractions
which look as any other abstraction does.

20
Thursday 25 June 2009

> How to Write Macros

• You need some functionality?

• Decide if the macro is really necessary.

• Write down the syntax of the macro.

• Figure out what the macro should expand into.

• Use defmacro to implement the syntax/expansion
correspondence.

21
Thursday 25 June 2009

> Idea

• Have a looping construct similar to dotimes...

(dotimes (i 10)
 (format t "~d " i)) ➞ “0 1 2 3 4 5 6 7 8 9”

... but for prime numbers

• (do-primes (p 0 19)
 (format t "~d " p)) ➞ “2 3 5 7 11 13 17 19”

• Could be needed in writing cryptographic
software.

22
Thursday 25 June 2009

> Is a Macro Necessary?

• (defun square (x) (* x x))

vs.

(defmacro square (x) `(* ,x ,x))

• Most of the time there is a clear distinction
between the cases which call for macros and
those which don’t.

• A proper ‘while’ can be defined only with a
macro, and so does do-primes.

23
Thursday 25 June 2009

> Syntax and Expansion

• Interface (syntax):

(do-primes (var start end)
 body)

• Behaviour (semantics):

(do ((var (next-prime start) (next-prime (1+ var))))
 ((> var end))
 body)

24
Thursday 25 June 2009

> Implement the Macro

• (do-primes (var start end)
 body)

• (defmacro do-primes (var-and-range &body body)
 (let ((var (first var-and-range))
 (start (second var-and-range))
 (end (third var-and-range)))
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
 ((> ,var ,end))
 ,@body)))

• Actually, you don't need to take apart var-and-range
by hand.

25
Thursday 25 June 2009

> Destructuring Lambda Lists

• (do-primes (var start end)
 body)

• (defmacro do-primes ((var start end) &body body)
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
 ((> ,var ,end))
 ,@body))

• Automatic syntax error checking for free.

• Integrates with IDEs such as SLIME.

• Destructuring parameter lists can contain &optional,
&key, &rest and also nested destructuring lists.

26
Thursday 25 June 2009

> Test the Macro

• Expansion:
(macroexpand
 '(do-primes (p 0 19)
 (format t "~d " p))))
➞
(DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))
 ((> P 19))
 (FORMAT T "~d " P))

• Behaviour:
(do-primes (p 0 19)
 (format t "~d " p)) ➞ “2 3 5 7 11 13 17 19”

27
Thursday 25 June 2009

> Plugging the Leaks

• Principle of Least Astonishment:

➡ Number of evaluations

➡ Parameter order

➡ Variable capture

28
Thursday 25 June 2009

> Number of Evaluations

• (do-primes (p 0 (random 100))
 (format t "~d " p))

• Expansion:
(DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))
 ((> P (RANDOM 100)))
 (FORMAT T "~d " P))

• Why is it a leak in the abstraction?

• How to fix it?

29
Thursday 25 June 2009

> Parameter Order

• Fixed version:

(defmacro do-primes ((var start end) &body body)
 `(do ((ending-value ,end)
 (,var (next-prime ,start) (next-prime (1+ ,var))))
 ((> ,var ending-value))
 ,@body))

• One new leak. What’s wrong?

30
Thursday 25 June 2009

> Variable Capture
• Fixed version:

(defmacro do-primes ((var start end) &body body)
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
 (ending-value ,end))
 ((> ,var ending-value))
 ,@body))

• What’s wrong? Consider:

(do-primes (ending-value 0 10)
 (print ending-value))

(let ((ending-value 0))
 (do-primes (p 0 10)
 (incf ending-value p))
 ending-value) 31

Thursday 25 June 2009

> Variable Capture (1)

• (do-primes (ending-value 0 10)
 (print ending-value))

➞

(DO ((ENDING-VALUE (NEXT-PRIME 0) ...)
 (ENDING-VALUE 19))
 ((> ENDING-VALUE ENDING-VALUE))
 (FORMAT T "~d " ENDING-VALUE))

32
Thursday 25 June 2009

> Variable Capture (2)
• (let ((ending-value 0))

 (do-primes (p 0 10)
 (incf ending-value p))
 ending-value)

➞

(LET ((ENDING-VALUE 0))
 (DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P)))
 (ENDING-VALUE 10))
 ((> P ENDING-VALUE))
 (INCF ENDING-VALUE P))
 ENDING-VALUE)

33
Thursday 25 June 2009

> Kinds of Capture

• Macro argument capture

➡ (defmacro print10 (x)
 `(dotimes (i 10)
 (princ ,x)))

• Free symbol capture

➡ (defconstant pi 3.1416)
(defmacro sum-pi (x)
 `(+ ,x pi))

• When does capture occur?

34
Thursday 25 June 2009

> Free Symbols

• A symbol s occurs free in an expression when it
is used as a variable in that expression, but the
expression does not create a binding for it.

• e.g., (let ((x y) (z 10))
 (list w x z))

• e.g., (let ((x x)) x)

35
Thursday 25 June 2009

> Macro Skeleton

• The skeleton of a macro expansion is the whole
expansion, minus anything which was part of an
argument in the macro call.

• (defmacro foo (x y)
 `(/ (+ ,x 1) ,y))

• (foo (- 5 2) 6) ➞ (/ (+ (- 5 2) 1) 6)

• skeleton: (/ (+ 1))

36
Thursday 25 June 2009

> When Does Capture Occur?

• A symbol is capturable in some macro
expansion if

(a) it occurs free in the skeleton, or

(b) it is bound by a part of the skeleton in which
macro arguments are either bound or
evaluated.

37
Thursday 25 June 2009

> Examples
• (defmacro cap1 () ‘(+ x 1))

• (defmacro cap2 (var)
 `(let ((x ...)
 (,var ...))
 ...))

• (defmacro cap3 (var)
 `(let ((x ...))
 (let ((,var ...)) ...)))

• (defmacro cap4 (var)
 `(let ((,var ...))
 (let ((x ...)) ...)))

38
Thursday 25 June 2009

> Examples

• (defmacro safe1 (var)
 `(progn
 (let ((x 1)) (print x))
 (let ((,var 1)) (print ,var))))

• (defmacro cap5 (&body body)
 `(let ((x ...)) ,@body))

• (defmacro safe2 (expr)
 `(let ((x ,expr)) (cons x 1)))

• (defmacro safe3 (var &body body)
 `(let ((,var ...)) ,@body))

39
Thursday 25 June 2009

> How To Fix Captures?

• (defmacro do-primes ((var start end) &body body)
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
 (ending-value ,end))
 ((> ,var ending-value))
 ,@body))

• Use symbols that will never be used outside the
code generated by the macro.

➡ Use really unlikely names. (?)

➡ Define your macro in a separate package. (?)

➡ Use GENSYM !
40

Thursday 25 June 2009

> How To Fix Captures?

• (defmacro do-primes ((var start end) &body body)
 (let ((ending-value-name (gensym)))
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
 (,ending-value-name ,end))
 ((> ,var ,ending-value-name))
 ,@body)))

• GENSYM will generate a new uninterned symbol
every time the macro is expanded.

• This fresh symbol cannot possibly occur in the
expressions passed as arguments to the macro.

41
Thursday 25 June 2009

> GENSYM in Action

• (do-primes (ending-value 0 10)
 (print ending-value))
➞
(DO ((ENDING-VALUE (NEXT-PRIME 0) ...)
 (#:G1165 10)) ; cannot be captured
 ((> ENDING-VALUE #:G1165))
 (PRINT ENDING-VALUE))

• Remember syntax for uninterned symbols?

42
Thursday 25 June 2009

> Recap: Rules of Thumb
Unless there's a particular reason to do otherwise:

• Parameter order: make sure macro arguments
will be evaluated according to their position in the
macro call.

• Single evaluation: make sure subforms are
evaluated only once by storing their result in
variables and using those variables instead of the
original subforms.

• No captures: use GENSYM at macro expansion
time to create variable names used in the
expansion.

43
Thursday 25 June 2009

> Uses of Macros

• Implicit quoting.

• Cosmetics.

• Evaluation control.

• Syntactic abstraction.

• Side effects.

• Macro-writing utilities.

44
Thursday 25 June 2009

> Implicit Quoting

• (defun f (x) (+ x x))

• (setf (fdefinition ‘f)
 (lambda (x) (+ x x)))

45
Thursday 25 June 2009

> Cosmetics

• (let ((x 42)
 (y 4711))
 (+ x y))

• ((lambda (x y) (+ x y)) 42 4711)

46
Thursday 25 June 2009

> Evaluation Control

• Conditional evaluation: if, cond, when, unless, etc.

• Delayed evaluation: delay, force, run-in-thread, etc.

47
Thursday 25 June 2009

> Syntactic Abstraction

• Hiding implementation details.

48
Thursday 25 June 2009

> Side Effects

• Functions don’t take reference parameters.

• So only macros can modify variables that are
passed as arguments.

49
Thursday 25 June 2009

> Macro-Writing Utilities
• Certain patterns come up again and again in writing of

macros, which can be abstracted away.

• Example: in macro definitions, it is very common to
have a LET that introduces a few variables holding
gensymed symbols.

• Why not make a tool to automate this repetitive task?

• (defmacro do-primes ((var start end) &body body)
 (with-gensyms (ending-value-name)
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
 (,ending-value-name ,end))
 ((> ,var ,ending-value-name))
 ,@body))) 50

Thursday 25 June 2009

> Let’s Do It!

• Interface:
(with-gensyms (var1 var2 ...)
 body)

• Expansion:
(let ((var1 (gensym))
 (var2 (gensym)) ...)
 body)

• Definition:
(defmacro with-gensyms ((&rest names) &body body)
 `(let ,(loop for n in names collect `(,n (gensym)))
 ,@body))

51
Thursday 25 June 2009

> Muscle Macro

• The classic ‘once-only’ macro generates code that
evaluates the given macro arguments once only, in a
particular order, and avoiding captures.

• (defmacro do-primes ((var start end) &body body)
 (once-only (start end) ; evaluation order is given here
 `(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
 ((> ,var ,end))
 ,@body)))

• Almost as simple as the original leaky version!

52
Thursday 25 June 2009

> Muscle Definition

53

(defmacro once-only ((&rest names) &body body)
 (let ((gensyms (loop for n in names collect (gensym))))
 `(let (,@(loop for g in gensyms collect `(,g (gensym))))
 `(let (,,@(loop for g in gensyms for n in names collect ``(,,g ,,n)))
 ,(let (,@(loop for n in names for g in gensyms collect `(,n ,g)))
 ,@body)))))

Better understood by examinating its expansion.

Thursday 25 June 2009

> How It Works
• (once-only (start end)

 `(do ((,var (next-prime ,start) ...))
 ((> ,var ,end))
 ,@body))
➞
(LET ((#:G1191 (GENSYM)) ; avoid variable capture
 (#:G1192 (GENSYM)))
 `(LET ((,#:G1191 ,START) ; evaluate only once, in order
 (,#:G1192 ,END))
 ,(LET ((START #:G1191) ; use original names
 (END #:G1192))
 `(DO ((,VAR (NEXT-PRIME ,START) ...))
 ((> ,VAR ,END))
 ,@BODY))))

54
Thursday 25 June 2009

> Macros for Efficiency... Not

• (defmacro my-add (arg1 arg2)
 (if (and (numberp arg1) (numberp arg2))
 (+ arg1 arg2)
 `(+ ,arg1 ,arg2)))

• Better do this with compiler macros!

55
Thursday 25 June 2009

> A Final Word

• The classic Common Lisp defmacro is like a cook’s
knife: an elegant idea which seems dangerous, but
which experts use with confidence.

• Not explained: symbol macros.

56
Thursday 25 June 2009

> Important Literature

• Paul Graham, On Lisp - the book about macros
(out of print, but see www.paulgraham.com)

• Peter Seibel, Practical Common Lisp, 2005,
www.gigamonkeys.com/book

• Guy Steele, Growing a Language - keynote
OOPSLA’98. Available at Google Video.

57
Thursday 25 June 2009

http://www.paulgraham.com
http://www.paulgraham.com
http://www.gigamonkeys.com/book
http://www.gigamonkeys.com/book

