Human-Centered Evaluation of Software Artefacts in Computer Science: Introduction, State-of-the-Art, and Perspectives

Stefan Hanenberg University of Duisburg-Essen, Germany

Santiago de Chile, Chile, 14.09.2012

What is this talk about?

- Tries to argue that human-centered / empirical studies are necessary
- Introduces into some basic terms
- Gives an overview of techniques required to perform experiments
- Shows pitfalls of experiments
- Gives an example of an experiment

Motivation

- Two different targets for research in CS
 - Machines
 - Execution speed, memory consumption, etc.
 - Human
 - Development speed, development errors, etc.
- Nowadays research methods mainly address machines
- Human plays rather minor role
- Usability (human interaction) rarely tested

Why should we care about humans?

- Humans are one of the main audience for CS constructs
- Usability of
 - Programming languages
 - APIs
 - User interfaces
 - •
- Extensibility
- Maintainability

Current situation

- Example: Programming Language
 - Typical statement from the community:
 - _ "If a language is good, people will use it"
 - Questions:
 - _ "How many people must use a language so that it becomes good?"
 - _ "What about the moment when a language was initially developed?"
 - _ "What about marketing effects?"
 - _ "What should be the motivation of the first developer using a new PL?"
- Strange
 - Later on hardly tested whether PL was being used
 - "There is a community...so the language must be good"
- Example: well.....many, many

Typical situation: anecdotes instead of applied research method

Claim

- Artifact design is (often) about developers
- Current dominating approach
 - (1) Find example
 - (2) Build construct
 - (3) Claim that construct helps developers

This leads to nowhere

• Research methods needed that consider developers / users ... involved humans

Why not the traditional way?

- Machine / algorithm / etc.
 - Formal models, formal proofs, etc.

- Human
 - No formal model
 => no formal reasoning
 => traditional approaches cannot be applied

Overview of CS Research Methods

Taken from [Hanenberg, Onward'10]

Structure

- Need for experimentation (here: controlled experiments with humans)
 - What means experimentation?
 - What is required to run experiments?
- State-of-the-art
- Challenges in experimentation
- Example: Experiment on type systems
- Conclusion

Why experiments?

- Problem (again)
 - No formal model available how humans work
- Experiments
 - Observations as <u>tests</u> what really happens
 - Approximation (examples) of actual behavior
- What is a test?
 - There must be a statement which says when a test fails (<u>hypothesis</u>)
 - There must be a objective way to check, whether test has failed (<u>falsification</u>)

Logic of experimentation

- An experiment...
 - does not provide a proof for a theory
 - can NEVER consider all existing variables
 - can hardly reflect on real world situations
 - can only provide some evidence that a new construct helps (apart from developer's subjective impression)
- Why should it be useful?
 - Test: "Does the artifact really help in situations the inventor had in mind"?
 - Result: "Uselessness of artifact can be shown!"

Structure of Experiment

- Measurement of impact of
 - Independent variable (e.g. PL) on
 - <u>Dependent variable</u> (e.g. development time)
- A variable has a number of different treatments
 - Example: Comparison between Java, C++, and C
 Indep. Variable PL with three treatments
- Experiment typically suffers from <u>confounding</u> <u>factors</u> (variable which are not controlled)

Background of Experiments (Karl Popper)

- Scientific argumentation
 - Falsification of hypothesis (use of statically typed language decreases development time)
 - More often

- Exploratory analysis (let's see what happens if...)
- NO PROOFS / NO GENERALIZABILITY
 - But always the hope that repeated observations reveal some truth

Background of Experiments (Karl Popper)

- Validity of hypotheses
 - Evidence for hypotheses increases the more often they could not be rejected
- Assumption
 - -Massive execution of experiments

- Hope...(as practical researcher)
 - the more data available, the more probable it is, that we finally "see some rules"

Single vs. Multiple Runs

- General idea of experimentation
 - It shows, that hypothesis does not hold
- Single run experiments (in physics)
 - Example: Galilei's Pisa experiment
 - => Single run falsified existing theory
 - => Boolean statement from single run => Boolean logic
- With humans: <u>Multiple runs</u>
 - Humans differ too much
 - => Multiple runs required
 - => How often do runs need to falsify theory?
 - => Argumentation based on analysis of sample => <u>Statistics</u>

Remaining questions

• How to design / perform experiments?

• How to analyse experiments?

...let's discuss it the other way around

Statistics in 5 minutes....

- Descriptive Statistics
 - Arithmetic mean, medians, variance, etc.
 - Relatively easy to understand, but inappropriate
- Inductive Statistics
 - Consideration of probabilities
 - Not that intuitive to understand, but state-of-the-art

Example: Descriptive Statistics

- Software development times with techniques A and B (in hours), 10 subjects
 - A: 1, 2, 3, 4, 1000 (mean: > 200, median: 3)
 - B: 10, 20, 30, 40, 50 (mean: 30, median 30)

- Problem
 - Argumentation based on mean or median?
 - Is 1000 an outlier that should not be considered?
 - Problems of descriptive statistics well known...

Inductive Statistics(1)

General idea: compare distribution / density functions of samples A and B

Inductive Statistics(1)

General idea: compare density functions

Inductive Statistics (1)

General idea: compare density functions

Computation of overlap between density function

Inductive Statistics (2)

- <u>P-value</u>: (Error-) Probability that a sample does NOT show A<B
- Arbitrarily(!) chosen alpha-level as "significance level" (typically: 0.05, 0.01, ...)
- Example:
 - "The difference turned out to be significant under an alpha-level of 0.05"
 => p<0.05

Inductive Statistics (3)

- Sample typically does not show perfect curve
 => approximation of density function required
 => sometimes, not even the kind of density function is known
- Standard mechanisms (significance tests) to compute <u>p-values</u> for different <u>scales</u> and <u>sample sizes</u>
 - T-Test, Wilcoxon-Test, Mann-Whitney-U-Test,
- Standard mechanisms to determine, whether a <u>certain distribution</u> can be assumed
 - Shapiro-Wilk-Test, K-S-Test, etc.
- All these tests are implemented in standard statistic software (R, SPSS, S, MiniStat, SAS, ...)

Inductive Statistics (4)

• Comparison of multiple curves (ANOVA): Impact of 1, 2, 3 on measurement

• Again: p-value (error probability that difference does not depend on 1-3)

• Partial-Eta-Square: How much of the variation can be explained by the variable (with the treatments 1-3)

Inductive Statistics (5)

- Quasi-endless different kinds of tests for different number of treatmeants and variables
- <u>Take away</u>:
 - Determination of error-probability p
 - Different standard significance tests
 - Value of p depends on
 - Effect size
 - Sample size
 - Scale
 - Applied significance test
 - Deviation (breadth of curve)

Remaining question

• How to design / perform experiments?

- What kinds of experimental design are possible / desirable?
- What is the impact of a certain design on the results?
- What kinds of measurements can be applied?

Experiment Design (1)

- Two-group between-subject design
 - One independent variable with two treatments
 - One subject tested under one treatment
 - Two different groups, each contains subjects with same treatment
- Example (Language A, B):
 - A: 1, 2, 3, 4, 1000
 - B: 10, 20, 30, 40, 50
- Problem

Lang. A	Lang. B
Group A	Group B

- Both groups require subjects with "the same characteristics"
- Problem: requires "very large" effect size in order to measure difference (for small sample sizes)

Experiment Design (2)

- Four-group between-subject design
 - Two independent variables with two treatments
 - One subject tested under one treatment
 - Four different groups, each subject assigned to treatment pair
- Example (Language A, B; Programming Task 1, 2)
 - G1 (Language A, Task 1): 1, 2, 3, 4, 1000
 - G2 (Language A, Task 2): ...
 - G3 (Language A, Task 3): ...
 - G4 (Language A, Task 3): ...
- Problem
 - Groups still require subjects with "the same characteristics"
 - Still: requires "very large" effect size in order to measure difference (for small sample sizes)

	Lang. A	Lang. B
Task 1	Group 1	Group 2
Task 2	Group 3	Group 4

Experiment Design (3)

- Large variety of further designs
 - Repeated measures designs, factorial designs, block designs, ...
 - Between vs. within-subject designs, ...
- General problems / considerations
 - Does design match hypotheses?
 - Difference hypotheses, correlation hypotheses, ...
 - Does design permit to determine effect?
 - Effect size, deviation, sample size, statistical power of required significance tests, ...

Experiment Design (4)

- General problem: <u>No measured effect</u>
 - Possible interpretations:
 - Sample size too small
 - Deviation too high
 - Inappropriate design
 - Non-exact measurement

- Easy to run into these problems!!!
- NO (!) indicator that main effect does not exist

- Alternative interpretation
 - Well, maybe the effect does not exist

Experiment Design Example

- Example
 - 2 group experiment, 10 subjects, comparison of Java and Assembler
 - Subjects: First year students
 - Task:
 - Write an algorithm that computes a strongly connected component with $O(n^3)$
 - ...without using a book on algorithms
 - Assumed result:
 - Average solution requires more than a year development time
 - No measured difference between Java and Assembler
 > very large deviation, small sample size, unbalanced groups,...
 - => actual task has a huge impact on measurements
 - => be careful when having an experiment without measured effect (p > alpha-level)

Experiment Design: p> 0.05

- But
 - if the significant effect of variable is "obvious" (common community believe)
 - if the number of subjects is "high" (whatever that means)
 - chosen tasks are the "killer-examples" for the measured technique
 - ...then...
- => Non-significant results are still interesting (but <u>only!</u> then)

Experiment Design (6)

- Take away: Experiment design
 - ...must match research question
 - ...influences the final result (p-value)
 - ...requires appropriate analysis (t-Test, ANOVA, ...)
 - ...results highly depend on actual task
 - ...be careful when no effect has been measured

Ok, let's do experiments

... but where and how to start?

Challenges of Empirical Studies

(remember: typically neither hypotheses nor concrete scenario available)

Challenges of Empirical Studies (1)

- Find / invent a hypothesis
- Find situations where hypotheses should be tested
- Find a good design

- Typical problem
 - "Fighting the deviation / effect-size beast"

Challenges of Empirical Studies (1)

- Scientific approach
 - Observation of singular events (sample) (e.g. developers using a dynamically/statically typed programming language)
 - Formulation of hypothesis
 - Identification of dependent / independent variables

(e.g. development time depending on type system)

- Construction of environment (IDEs, tasks, languages, machines, ...)
- Collection of subjects
- Measurements (e.g. development time to solve a certain task)
- Analysis (mainly inductive statistics)

Challenges of Empirical Studies (2)

- Find / invent a hypothesis
- Find situations where hypotheses should be tested
- Find a good design

- Typical problem
 - "Fighting the deviation / effect-size beast"

Problem(s) in Experimentation

Conclusion

- **Experimenter should try to**
- reduce deviation, and/or
- increase effect size

Possible ways

- Adaptation of experimental design (e.g. within-subject design) => <u>Reduction of deviation</u>
- Adaptation of tasks (no development "from scratch") => Incease effect size

[Kleinschmager, Hanenberg, Robbes, Tanter, Stefik; ICPC'12]

- Background: 4 experiments, "mixed results"
- Idea: Static type systems help when using an undocumented API
- Experiment
 - Java / Groovy as PLs
 - 9 programming tasks (designing tasks took about 2 month)
 - 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes
 - 33 subjects (mainly students)
 - Within-subject design (2 groups)
- Result
 - Positive effect for 6/9 tasks
 - No effect on fixing semantic error
 - Positive effect on fixing type error
 - Mostly (4/5) positive effect on using API classes

- Task 4,5: Semantic errors
- 1,2,3,6,8: New class usage
- 7, 10: Type errors

- Potential problems
 - Artificially constructed API
 - parameter names do not reflect on type names (but on names chosen from the domain)
 - Is it repesentative?
 - Artificially constructed environment
 - Artificial programming tasks
 - Java type system
- <u>Maybe we measured something else</u>
 - "Existence of type annotations in the code help....no matter whether they are statically type checked or not"
- <u>Maybe "in the wild" positive effect of static type system "vanishs"</u>
 - There is no generalizability

- How to go on?
 - Traditional way
 - "We have done an experiment on type systems and found differences, let's go to the next topic"
 - Alternative way
 - Go on with experimentation on type systems
 - Variations on type systems, IDE support, replication of experiments, etc.
 - Try to find correlation hypothesis that survives falsification trials

Where to Start?

• Relatively few textbooks available specific to software engineering

Where to Start?

Huge bunch of textbooks outside the domain of software engineering

- Psychology
- Social Sciences
- Medicine
- • •

- Why not just use these books?
- Problem: Different domains have different problems...

Problem of different domains

 What is the difference between measuring blood pressure and software development time?

Problem of different domains

Blood pressure

• You will hardly find two (living) human subjects on this planet whose blood pressure differs by factor 10 (even factor 5 is unlikely)

<u>Software development time</u>

• It is hard to find a sample of human subjects where development time between best and worst developer is less than factor 5

=> Large set of experimental designs / statistical methods from for example medicine cannot be (directly) used in software construction

State of the Art: Empirical SE

State of the Art: Empirical SE (1)

- Empirical approach typically not taught to students
 - ...how can students check whether a statement "static type systems are good for developer hold"?
 - ...how can students understand an empirical study they are reading about?
 - ...how can a student perform such a study?
- There are empirical studies / controlled experiments (ok, not that many)

State of the Art: Empirical SE (2)

- Typically, a large number of experiments suffer from general problems (experiment design as well as analysis)
- A lot of techniques come up without a hypothesis / proposed measurement
 - Example: "Eclipse is quite a mature IDE and helps developer a lot"

=> Experimenter becomes "inventor of hypothesis to be tested"

State of the Art: Empirical SE

- Theories mainly describe existence of a difference
 - ... "static type systems better than dynamic type systems"
 - ...empirical knowledge rather low
- Theories typically do not try to quantify differences (for some good reasons)
 - ...empirical knowledge rather low
- Experimenter currently have to "invent situations for language constructs on their own"
 - Example: Java vs. Assembler....

Empirical SE: Open issues

- Endless list of open issues
 - How can we distinguish good from bad developers upfront?
 - Fundamental question for certain experiment designs (factorial design, block design, etc.)
 - What kind of programming tasks are worth being studied?
 - What tasks do have small deviations, which represent "daily programming tasks"?
 - What tool support should be delivered in an experiment?
 - Most often, no data for tools is available...

Long term goal of SE

- Theories
 - Descriptions of situations where certain constructs dominate others (size of difference part of theory)
 - Large number of experiments that try to falsify theories
 - Example (very first initial step):
 - "When using an undocumented API, …..
 …..static typing reduces development time"
- General kind of theory:
 - "When the code is of kind X,
 ...the use of construct A leads to C
 ...which differs to construct B by factor..."

Discussion & Conclusion

- Controlled experiments as a research method
 - Statistics, experiment designs
- Many, many problems
 - Missing experimentation in the past, basics, organizational issues

•

Conclusion

- <u>We must teach experimentation</u>
 - Help people/students to understand what's going on
 - Students need to know <u>methods</u> which permit to identify techniques which are "bad, time consuming, error prone"
- We need to integrate experimentation in our courses
 - The SE course should not say "Pair programming is good", it should also introduce the experiments which revealed that effect
- <u>We must do experimentation</u>
 - We want to improve the life of developers & users
 - This does NOT mean that we should ignore the machines

Human-Centered Evaluation of Software Artefacts in Computer Science: Introduction, State-of-the-Art, and Perspectives

Stefan Hanenberg University of Duisburg-Essen, Germany

Santiago de Chile, Chile, 14.09.2012