
Aspect Coordination for Web Applications in Java/AspectJ and Ruby/Aquarium

Arturo Zambrano∗, Alejandro Alvarez∗, Johan Fabry† and Silvia Gordillo∗ ‡
∗ LIFIA, Facultad de Informática, Universidad Nacional de La Plata

50 y 115, La Plata, Argentina
arturo,aalvarez,gordillo@lifia.info.unlp.edu.ar

† PLEIAD Lab, Computer Science Department (DCC), Universidad de Chile
Blanco Encalada 2120, Santiago, Chile

jfabry@dcc.uchile.cl
‡CIC, Provincia de Buenos Aires

Abstract—Aspects are independent modules that capture
otherwise crosscutting behavior. There are mechanisms for
enabling their coordination without compromising their in-
dependence, but the aspect oriented implementation platform
highly impacts on the final result. In this work we analyze
Java/AspectJ and Ruby/Aquarium for the implementation of
such coordination mechanism. Performance, conceptual and
coding trade-offs can be derived from the differences between
these platforms. The balance between absolute and relative per-
formance costs and the benefits of provided by each platform
are not obvious. The results of this analysis is determining
to choose the right underlying aspect platform for different
scenarios.

Keywords-aspect oriented programming, static languages,
dynamic languages

I. INTRODUCTION

In the application development process, it is common to
find a set of concerns that affect many objects beyond the
modules which constitute the natural units to define concerns
functionality. They are called crosscutting concerns. A cross-
cutting concern is one that is spread over (cuts across) many
of the modules of a system. These concerns often cannot be
cleanly decomposed from the rest of the system, resulting in
code difficult to develop and maintain [19]. Typical examples
of crosscutting concerns are: persistence, synchronization,
error handling. etc.

Aspect-Oriented Software Development (AOSD for
short) [11] is one of many paradigms resulting from the
effort to modularize crosscutting concerns. The goal of
AOSD is to decouple these concerns, so that the system’s
modules can be easily maintained, evolved and seamlessly
integrated.

AOSD introduces a new kind of module called aspect.
An aspect augments the behavior of one or many modules
(known as base application) by executing some behavior
when determined execution points in the base application are
reached. These execution points are known as join points in
the AOSD jargon. Examples of joinpoints are: method calls,
variable assignation, constructor call, etc.

An aspect is composed by pointcuts and advices. A point-
cut is an expression denoting a set of joinpoints. Advices

define the behavior of the aspect, and they are associated
to a pointcut. When the base application is executed if a
joinpoint matches a pointcut definition, the associated advice
is executed. The method is said to be advised. Along the
paper we will use the verb to advise, to indicate that behavior
defined in an advice is added to method or an advice.

As the objective of AOSD is to modularize crosscutting
concerns, aspects are defined separately from the rest of the
application. The process that composes the behavior of the
base application and the aspects is called weaving.

The goal behind using aspect orientation is to have
independent aspects whose composed behavior provides the
desired functionality when they are woven into the base
application.

Despite of the desired decoupling between aspects, it is
recognized that aspects interact in a number of ways [16].
Therefore, it is necessary to coordinate their behavior,
while keeping them independent, and without compromising
reusability. We have previously shown this can be achieved
for context-aware systems using semantic aspectual infor-
mation [22].

In this paper we extend this work, showing a scenario
where aspect coordination is needed in the context of col-
laborative web applications. Then we analyse the trade-offs
derived from applying our coordination approach using two
different platforms for the implementation of such applica-
tions: Java [7]/AspectJ [10] and Ruby [13]/Aquarium [1].
Implementing aspect oriented systems in these platforms is
substantially different. These differences make it necessary
to perform an in-depth analysis of each feature needed for
aspect coordination, evaluating the abilities of each platform.

In this work we report the results of such an analysis. For
example, the ability of performing runtime unweaving in
Ruby provides conceptual benefits over simulating it when
using AspectJ [10]. On the other hand, runtime weaving
is an expensive operation which takes 7000 times the time
needed for a method call.

Some differences can be deduced from the fact that Java is
strongly typed and compiled, and Ruby is dynamically typed
and interpreted. At same time, many relevant consequences



for the development of aspect oriented systems are reported,
particularly when aspect behavior needs to be coordinated
at runtime using context information.

This paper is structured as follows: Sect. II presents the
domain and motivates the need for aspect coordination.
Sect. III shows our approach for aspect coordination and
the peculiarities of its implementations in Java and Ruby.
Sect. IV presents a comparison of both implementations
from many perspectives. Finally, in Sect. V we conclude
the work and present future work.

II. CONCERNS IN COLLABORATIVE WEB APPLICATIONS

Collaborative web applications deal with a myriad of
concerns. Building this kind of software involves concerns
at different levels: from low level ones such as persistence,
distribution, synchronization to more functional ones, such
as sharing, conflict solving or activity awareness.

Consider for example the features present in the set of
collaborative web applications known as Google Docs [6].
Google Docs enable collaboration for editing spreadsheets
and text documents. These applications share a common set
of features related to collaboration, for example: the discus-
sion pane, versioning, user activity awareness, notification
of changes, change logging, chat, etc.

Depending on the decomposition chosen, some of these
concerns will be crosscutting. Therefore, many of these
crosscutting concerns can be designed and implemented as
aspects. We argue that such aspects must be coordinated in
order to get the application working properly.

A. Running Example

For the rest of the paper we will consider a slightly
modified version of the Google Docs text editor, which we
describe below:

A collaborative text editor allows multiple users
to cooperate in writing documents. A document is
created by a user, who can then decide to share it.
A document has a quota of disk space in the server.
When two (or more) users are working on the
same document at the same time, each one must
be aware of the activity of the other. Users can
discuss about the document content in a right side
chat widget. Discussions are saved associated to
the corresponding version of the document where
they took place. Users can set up notification rules,
that is, upon certain events –in the document–
email notifications are delivered. There is also a
log of activities which register events associated
to the document.

Collaborative web applications are complex. In this case,
assuming an aspect oriented approach to the problem, we
model the “pure” text editor as the base application, leaving
aside, for a moment, the collaborative functionality. In this
application, entities such as: the document and the users

could be considered part of the base application. Typical
operations for the document would be open, save, close, add
collaborator, remove collaborator, create a new version, etc.
Besides the objects in the main dimension there are number
of crosscutting concerns related to collaboration (explained
below). These concerns can be effectively modeled and
implemented as aspects. For example, awareness has been
modeled as an aspect by Torres et al. [18]. The personal-
ization concern is also crosscutting, since it affects many
elements in the application. In [21] we have shown how
personalization can be introduced seemleasly by applying
AOSD. Other concerns such as activity log and notification
of change are crosscutting, since they need to be invoked in
every single event that must be notified or logged.

A description of some of the collaboration concerns of
this application follows:

Awareness: If the document is shared, each user must
be aware of the activity of other online users. When a change
is introduced by a user and the document is saved, all other
users must receive the new version of the document. Other
types of awareness include remote cursors, remote field of
vision, remote selection or user presence [17].

Discuss: Discuss feature is enabled just when a doc-
ument is shared, and when at least two collaborators are
currently logged in. Discussion logs are saved along with
the corresponding version of the document.

Notification Rules: There are a number of events in
the life cycle of the document that a user can request to
be notified of. Upon the occurrence of any of these events,
email notifications are delivered according to configuration
settings. Some of the events that can be notified are: a docu-
ment was opened, there is a new collaborator, a collaborator
left the document, etc.

Activity Log: Activity is registered in a log, which is
associated to the different versions of the document. Such
information includes events such as: collaborators joining or
leaving the document, changes, open and close operations,
invitations for collaboration delivered, etc.

Personalization: Personalization [3] changes somehow
the content or links, in a user specific manner. Usually,
personalization is based on the user profile. Building a
user profile involves taking information from many sources
about user activities and preferences. Then, adaptations are
rendered and introduced into the content of the application.

B. Interactions between Collaborative Web Application
Concerns

When collaboration concerns are designed and imple-
mented as independent aspects it is necessary to coordi-
nate their behavior so that the final desired functionality
is achieved. This need is reinforced if adaptability to the
context is desired. Context must be taken into account to
select the aspects which should be active.



Next, we list some example scenarios where such coordi-
nation is needed:

Scenario 1: Notification Rules & Awareness: Lets
suppose that notification of change rules and awareness are
active. In this scenario two users have been collaborating
(one of them using a slow connection), so both of them
are aware of changes made by each other. In this case,
it would be good to avoid sending the email notifications
(notifications of change concern) to the user with the slow
connection, because he is aware of the changes, information
would be redundant and it would consume a scarce resource.

Scenario 2: Discuss & Personalization: As we ex-
plained before, personalization involves the customized pre-
sentation of content and links. In this scenario, lets suppose
two users are colaborating, each one with personalized
content based on his own user profile. When they start a
discussion, it is desirable to switch off all the personaliza-
tion functionality. This is needed in order to have all of
them looking at the same content, without this precondition
discussion could be difficult as they might be observing
different content.

Scenario 3: Activity Log & Discuss: As we said, each
document – and its associated data such as logs, discussions,
etc. – has a quota of disk space. If the quota is being reached,
some concerns may compete for the remaining space. For
example, if activity log is working, and a discussion takes
place, at the time of saving a new version of the document
it is possible that activity information need to be discarded
in favor of the discussion. This is because under this
circumstance we privilege content generated by users (such
as the discussion) instead of logging data. In this case the
best choice would to be switch off the activity log to avoid
gathering unnecessary data.

C. The Role of the Execution Context

Implementing this kind of behavior using aspect orienta-
tion is a challenge, since we would like to have each aspect
independent and not coupled to others, but at the same time
we want to keep them working cooperatively. In these cases,
the key piece of information to get them working correctly
is given by the execution context: who is collaborating, how
much space left there is for data, what the users are doing,
which aspects are running, etc. Using this information, it
is possible to activate or deactivate the aspects in order to
adapt application behavior to the context.

III. ASPECT COORDINATION

In this section we describe the general approach for
coordinating aspects and the particularities derived from its
implementation in different platforms.

A. General Approach

In this section we briefly introduce the general approach
for coordinating aspects explained in our previous work [22].

Aspects are enriched with metadata containing semantic
information about them, as shown in Figure 1. We call
this metadata semantic labels. Depending of the platform
of choice, semantic labels can be expressed using annota-
tions [8] (in the case of Java) or attributes (for .Net [12]),
as separate file (for example using XML [5]), or as part
of the documentation in the source code (in similar way as
XDoclets [20]). This semantic information describes which
functionality an aspect provides, how it affects the base
application, what effects it causes on available resources,
etc. Examples of such semantic labels in our domain are:

• A semantic label that describes a resource and the effect
that the tagged aspect has on it. In our example, the
Activity Log could be tagged as “Hard Disk Consumer”.

• A semantic label indicanting the role or functionality
provided by an aspect: “Gathers User Content” could
be attached to the Discuss aspect. The tag “Adapt User
Content” can be applied to the Personalization aspect.

Having such semantic information allows us to write
coordination logic for aspects based on their semantics and
not coupled with syntactic details.

Coordination logic is expressed in rules, that indicate
which aspect(s) must be (de)activated according to the cur-
rent context. But, instead of referring them by their names,
rules can use semantic labels. The condition of these rules
evaluate the context, and the consequence performs actions
on the aspects (for example deactivating an aspect which is
not longer necessary). The combined use of labels and rules
for controlling aspects, avoid the coupling between aspects
themselves and between rules and aspects.

The key piece for deciding how the aspects must be
coordinated (which ones need to activated or deactivated)
is the context. Context for this application includes the state
of resources (for example remaining space for a document
and its data), who is collaborating, which actions users are
performing (e.g. discussing), the connection type used by
each user, which aspects are active, etc.

All this context information is continuously maintained at
runtime and can be used to express conditions for our rules.
After the context is changed, rules are evaluated so that just
the aspects suitable for such context are active. Activation
or deactivation of aspects can be implemented in different
ways according to the platform (see Section IV-B).

Let see how our approach solves, for example, scenario 3.
In this scenario we are running out of space for a document
and the Discuss and Activity Log aspects are running. The
metadata for Discuss states that it consumes disk space and
that it gathers user content. On the other hand, semantic
labels for Activity Log indicate that it consumes disk space
and it logs activities.

Besides this semantic information, we have coordination
rules that, based on the context, coordinate the aspects. For
this example the rule is as follows:



Figure 1: Aspect coordination based on aspect metadata and context evaluation.

If “running out of space” turn off aspects that “log
activities” and “consume disk space”

This high level expression is translated into a proper rule
for a rule engine. Upon a change in the context of a doc-
ument, these rules are evaluated so aspects are coordinated
according to current context. As a result, Activity Log will
be turned off when we are running out of disk space.

B. Implementing Coordination in Java and AspectJ

In this section we will explain how our approach is
implemented when the implementation platform is Java
and AspectJ [10]. AspectJ is an extension of the Java
programming language that supports the concepts introduced
by aspect orientation.

We have implemented base entities (Document, User,
etc) as objects. Collaboration crosscutting concerns have
been implemented as aspects which have pointcuts bound to
relevant methods in our base objects, for example: document
open, close, save. etc.

Semantic labels are expressed using annotations [8]. They
can be directly attached to aspects as they are coded. For
example, our Activity Log aspect could be declared as shown
in Listing 1, where it is annotated as disk space consumer
and provider of logging functionality.

1 @ConsumeDisk
2 @Logging
3 public aspect ActivityLog ...

Code Listing 1: Aspect declaration including semantic labels.

Context is modelled as an object and there is a context
instance per document. Context updates are performed by
an aspect that captures all events that are relevant to our
domain. To name just a few: document open, close, save,
user start collaborating, user joins a document, user leaves
a document.

After the context has been refreshed, coordination rules
are evaluated. In order to evaluate rules we have selected
Drools [4] as our rule engine. The context of the affected
document is passed as a parameter each time it is needed to
evaluate the rules. We also decided to add aspect instances
as part of the context of a document, making it easier to

manipulate them from the rules. Listing 2 shows an example
of a coordination rule written using Drools syntax. This rule
turns off aspects that consume disk and that provide logging
functionality when 85% of the disk quota has been occupied
by a document and its associated data.

1 rule "DiskQuotaLimit"
2 when
3 context : DocumentContext(occupiedDisk
4 > QUOTA_LIMIT * 0.85)
5 then
6 context.turnOffAspects("ConsumeDisk",
7 "Logging")
8 end

Code Listing 2: Coordination rule using Drools syntax.

To provide aspect (de)activation, every execution of a
collaboration aspect is controlled by another aspect which
decides if the collaboration aspect advice is actually exe-
cuted or not. Therefore, it is possible to skip such execution
if context situation demands it. We contrast this in detail
against the Ruby/Aquarium implementation in Section IV-B.

C. Implementing Coordination in Ruby and Aquarium

In this section we explain how our approach is imple-
mented using Ruby [13], and the Aquarium framework [1]
for the aspect oriented support. As the Ruby/Aquarium
combination is not as widespread as Java/AspectJ, we show
our implementation in more detail.

Ruby does not provide a built-in support for attaching
information to code, therefore we developed a workaround.
The implementation of semantic labels for Ruby is done by
defining a set of global constants which are attached to a
given class by calling a method. Listing 3 shows and aspect
declaration, the attach method is called in line 2, with a
parameter called semanticLabels.

1 class ActivityLog < WebAspect
2 attach :semanticLabels
3 => [ConsumeDisk, Logging]

Code Listing 3: Declaration of semantic labels in Ruby

This definition is captured at runtime by the method
missing exception. By implementing the handler for the



method missing exception it is possible to capture and
interpret any call that the interpreter could not match to a
method signature. In our implementation for method missing
(in the root of our aspect hierarchy), we first validate it is
a semantic information definition. Second, the definition is
processed and information is attached to the aspects.

We have modelled context information as an object con-
taining the information regarding the document (such as disk
quota available), deployed aspects, server and user context
information. There is a context monitor aspect which cap-
tures relevant events and updates the context as necessary.
After a context update it calls for rule evaluation. Listing
4 shows a simplified version of the ContextMonitor aspect.
In this code, after calls to methods open and save of the
class Document (lines 2-4), we get the context (line 5) and
fire rule evaluation (line 6).

1 Aspect.new
2 :after,
3 :calls_to => [’open’, ’save’],
4 :in_types => ’Document’ do
5 |join_point, aDocument, *args|
6 context = createOrUpdateContextFor(aDocument)
7 RulesEngine.evaluateContext(context)
8 end

Code Listing 4: Aspect definition example using Aquarium

For the rules processing we chose the rule engine
Ruleby [14]. Listing 5 shows a rule example where the disk
quota available (for a given document context) is evaluated
and according to the result, some aspects are deactivated.
The rule is composed by an optional symbol that is a unique
identifier for the rule (line 1, DiskQuotaLimit). In line
2 the parameter context is bound to a DocumentContext
instance. The rule condition is presented in line 3. The
consequence of the rule is represented by the block defined
in lines 4 to 7.

1 rule :DiskQuotaLimit,
2 [DocumentContext, :context,
3 m.occupiedDisk > QUOTA_LIMIT * 0.85]
4 do |vars|
5 vars[:context].turnOffAspects([ConsumeDisk,
6 Logging])
7 end

Code Listing 5: Rule definition example using Ruleby

In this example, the consequence is to deactivate all
aspects that have the semantic label “ConsumeDisk” and
“Logging”.

Activation and deactivation of aspects is done by weaving
and unweaving the aspects. These operations are expensive
but after unweaving an aspect, its associated overhead is
removed from the base code. Turning on aspects is done
by installing aspects on the required objects (in this case
Document instances) or classes. System wide aspects, such
as the aspect in charge of context updates, are installed at
the class level, in this way they affect the behavior of all

the existing instances. On the other hand, aspects that need
to work on particular instances of Document are installed at
the instance level. For example if Activity Log needs to be
active for one document and disabled for other documents,
the aspect is woven just into the instance of Document that
needs logging.

IV. COMPARISON BETWEEN JAVA AND RUBY
IMPLEMENTATIONS

In this section we recapitulate and compare pros and cons
of the implementation on each platform.

A. Common Characteristics

There are a number of characteristics present in both
implementation:

• Coordination rules can be modified at runtime: both im-
plementations enable the modification of coordination
rules without stopping the system for compilation. This
is necessary in order to have real runtime adaptation in
our systems.

• Rules can manipulate aspects using semantic labels.
In both implementation we managed to avoid coupling
rules to aspect names. Instead rules use semantic labels.

• Aspect instances are kept as part of the context. We
found that aspects need to be included as part of the
context, in order to provide the full picture of the
system state to the rules.

B. Dynamic vs Static approaches

Many of the implementation differences and difficulties
are derived from the dynamic nature of Ruby/Aquarium
compared to the static nature of Java/AspectJ. Here we
explain how this impacts our implementations.

As we need to implement activation and deactivation of
aspects at runtime and AspectJ does not provide runtime
weaving and unweaving, we applied a workaround. It is
based on deploying another aspect, called ExecutionCon-
troller. It has an around advice that affects all the collabora-
tion related aspects, allowing the execution of some aspects
and preventing the execution of others. This workaround
adds an extra overhead in order to keep track of which aspect
instances must be active and which not. The ExecutionCon-
troller aspect also imposes another overhead for checking
the execution of each advice of our collaboration aspects.

For AOSD platforms where (un)weaving is possible at
runtime such as Ruby/Aquarium, the solution is simpler;
when an aspect needs to be deactivated it is unwoven from
the application or the particular object. Weaving and un-
weaving are expensive operations, we analyze performance
in Sect. IV-G.

Figure 2 shows how the Activity Log is deactivated
in both implementations. For the AspectJ implementation
(Fig. 2a) we can see that Activity Log is still working on
the base application, but executions are skipped due to the



(a) AspectJ (b) Aquarium

Figure 2: ActivityLog aspect deactivated in AspectJ (left) and Aquarium (right). Arrows indicates advising.

ExecutionController aspect. We can see that for the Ruby
based implementation (Fig. 2b) the aspect instance has been
removed, therefore does not affect any element in the base
application.

To sum up, AspectJ requires extra work to simulate aspect
deactivation. On the other hand Aquarium provides full
fledge runtime weaving and unweaving, making it ideal for
scenarios where aspects need to be removed.

C. Aspect Instantiation

Aspect instantion mechanisms have an impact when the
programmer wants to take control of some aspect instances,
as it is our case with the coordination rules.

As stated in the AspectJ documentation [2]:

... aspect instances are automatically created to cut
across programs.

This sentence is valid for the wide range of keywords
that control aspect instantion (perthis, pertarget, percflow
and percflowbelow). In all these instantion models, aspects
are instantiated automatically. This makes it difficult the
task of getting references to the aspects instances, which
is necessary for our approach to work.

In our case we need to keep an association, in the context,
of each aspect instance applied to a document. Getting such
references is not trivial as AspectJ is seemingly not intended
for this usage. AspectJ requires more complex code (when
compared with Aquarium) to keep track of aspect instances.

On the other hand, in Ruby it is necessary to have the
interpreter execute an extra instruction for performing the
weaving of the aspect. This makes it easier to get the
reference to the aspect instance, but it also asks for a careful
startup process, to ensure all necessary aspects are woven by
the time the application effectively runs.

Ruby is more appropriate when we need to keep explicit
references to deployed aspect instances. If manipulation of
aspects becomes a must, more work is needed to make As-
pectJ friendly in this respect. Research has been undertaken
in this direction by Sakurai et al. [15].

D. Aspect Modelling

Aspects in Aquarium are instances of the Aspect class
provided by the framework. That is, it is not necessary to
declare a new class to have an aspect, as it is the case in
AspectJ. In our approach it is however necessary to provide
a class for attaching the semantic labels. Therefore, in the
Aquarium implementation we had to define a class per
aspect we want to manage. In this way, we have something
to attach the semantic label to.

E. Using Around Advices

In the AspectJ implementation around advices cannot be
used by collaboration aspects, because it could harm base
functionality. This is because a collaboration aspect could be
deactivated in some context, and in the case of an around
advice this situation would lead to skipping the execution of
the method being advised.

This is not a problem when using Ruby/Aquarium, since
aspects containing an around advice can be unwoven, leav-
ing the original joinpoint functional.

F. Expressing and Attaching Semantic Information

Annotation support provided by Java is well-suited for
expressing semantic information. As annotations are types
they can be type-checked. For example, it is possible to avoid
adding unexpected semantic labels, because annotations
must be defined beforehand. Annotations can be examined
at compile time or accessed via a reflective API at runtime.
We decided to use them at runtime, inspecting them when
aspects are instantiated.

In contrast, Ruby does not provide any built-in mechanism
for attaching information to code. In this case, it is nec-
essary to go through a workaround defining constants and
attaching them using the method_missing mechanism
we described previously.

G. Performance

In this section we analyse the performance overhead
imposed by our coordination approach in both implemen-
tations. As the mechanisms used for achieving the runtime
adaptation of aspect behavior depend on the platform, each



(a) Absolute Time (b) Relative Cost

Figure 3: Charts comparing absolute time and the relative cost of executing advised methods, weaving and unweaving.

platform must be analyzed separately. In the case of Ruby
we also measured the time for our tests running on top of
JRuby [9], the Java based Ruby interpreter. Henceforth we
refer with Ruby to the Ruby native interpreter, and JRuby
to its Java based counterpart.

The coordination approach is based on the idea of evalu-
ating context and then deciding which aspects must run and
which ones not. So, the overhead imposed is mainly due
to the context monitoring, rule execution and (de)activation
of aspects. Context monitoring is also done by aspects.
Therefore we measured the overhead for executing advised
methods, for performing (un)weaving operations (in the case
of Ruby), for executing advised advices (in the case of
AspectJ) and finally the time for executing the coordination
rules in each platform.

To avoid the obvious differences between a byte-code
precompiled language such as Java and an pure interpreted
one as Ruby, we compared the overhead imposed against a
relative unit, which is the time needed to perform a method
call in each platform.

Table I: Compared execution times for Ruby/Aquarium
(1000 executions)

Operation Units Milliseconds
Method Call 1 4,6
Affected method (object level) 15 67
Aspect Weaving (object level) 7360 33756
Aspect Unweaving (object level) 275 1250
Aspect Weaving (class level) 7529 34036
Aspect Unweaving (class level) 540 2440

Tables I and II show the time need to execute methods,

Table II: Compared execution times for JRuby/Aquarium
(1000 executions)

Operation Units Milliseconds
Method Call 1 50,2
Affected Method (object level) 7.28 365.6
Aspect Weaving (object level) 668.98 33582
Aspect Unweaving (object level) 38.43 1929
Aspect Weaving (class level) 596.79 34494
Aspect Unweaving (class level) 28.44 1643.8

advised methods (called affected methods), and (un)weaving
for classes and objects. JRuby is slower than Ruby native
interpreter in absolute time for (un) weaving (see Fig. 3a),
but it is noticeable that the relative times for weaving and
unweaving are better for JRuby, being almost 10 times faster
than Ruby (see Fig. 3b). JRuby is also twice faster than Ruby
for advised method calls, when comparing their relative
times.

Table III: Compared execution times for Java/AspectJ (1000
executions)

Operation Units Milliseconds
Method Call 1 0,0074
Affected Method
(Advised method + Execution Controller) 31 0,2314

Table III shows the comparative costs for methods and
affected methods, which are advised methods whose advices



(a) Absolute Time (b) Relative Cost

Figure 4: Charts comparing absolute time and the relative cost for rules execution.

Table IV: Compared execution times for Ruby/Ruleby

Operation Units Milliseconds
Method Call 1 4,6
1 Rule 1 Condition 10 45
1 Rule 3 Conditions 20 92
10 Rules 1 Condition 20 92
10 Rules 3 Conditions 66 304

Table V: Compared execution times for JRuby/Ruleby

Operation Units Milliseconds
Method Call 1 50,2
1 Rule 1 Condition 10 488
1 Rule 3 Conditions 14 685
10 Rules 1 Condition 19 954
10 Rules 3 Conditions 28 1392

are at the same time controlled by the ExecutionController1.
In this case the relative time needed for executing an
advised method call (using singleton aspects) is similar to
JRuby/Aquarium. For the case when an aspect is instantiated
in a per object basis (perthis keyword), the advised
method doubles its execution time (16 units against 8 for
aspect singletons). The advised advice for our per-object
instantiated aspects takes almost 4 times the time needed
for a regular advised method (31 units against 8).

Tables IV and V show the time needed for evaluating rules
using the Ruleby engine on top of Ruby native interpreter

1In the tables and charts we use the terms affected methods to denote
those methods that are advised by the collaborative behavior. In the case of
the Ruby/Aquarium implementation it is equivalent to an advised method,
but in the case of AspectJ, an affected method measure also considers the
existence of the ExecutionController.

Table VI: Compared execution times for Java/DRools

Operation Units Milliseconds
Method Call 1 0,0074
1 Rule 1 Condition 11418 84.5
1 Rule 3 Conditions 16891 125
10 Rules 1 Condition 49067 363.1
10 Rules 3 Conditions 50256 371.9

and JRuby. The relative times in this case are quite similar.
Table VI shows the costs of invoking the rule-engine for

the Java based rule engine. Drools is a full featured rule
engine, which results to be slow in execution, specially when
it is compared with regular times for method calls in Java
(see Fig. 4b). But in terms of time, the performance of
Drools is comparable to Ruleby running on Ruby and better
than Ruleby running on JRuby (see Fig. 4a).

In the case of Ruby/Aquarium an aspect can be com-
pletely (un)woven at runtime. As it is a costly operation,
in cases where aspects need to be frequently (de)activated
it would be better to use an AspectJ based solution (as
it does not requires (un)weaving). On the other hand, if
aspect activation cycles are stable and long enough, the Ruby
based implementation is more appealing, since the overhead
imposed by an aspects is completely removed after it is
unwoven.

Considering the relative number we conclude that if
aspects deactivation cycle is more frequent that 475 aspect
executions, it is better to use AspectJ. This is because we
need long periods (more than 475) of no (de)activation to
amortize the cost of performing (un) weaving in Ruby.



V. CONCLUSION AND FUTURE WORK

In this work we have compared the implementation of
our aspect coordination approach in two different platforms:
Java/AspectJ and Ruby/Aquarium.

From the comparison of these implementations we have
shown that Ruby provides more appropriate support for our
approach, as it is easy to manipulate aspect instances. Fur-
thermore, its ability of performing (un)weaving at runtime is
suitable for implementing the notion of aspect (de)activation
we need. The downside of Ruby is its performance: weaving
is notably slow, even compared to other operations in Ruby,
such as method calls.

In contrast, the Java/AspectJ implementation is faster in
absolute and relative terms, but the automatic instantiation
mechanism provided by AspectJ makes difficult the task
of getting the aspects instances we need to manipulate.
Furthermore, in the AspectJ implementation there is always
an extra overhead corresponding to our aspect (de)activation
infrastructure. However, the base methods affected by the
collaboration aspects and our coordination infrastructure run
notably faster than their Ruby based versions.

From the conceptual point of view Ruby/Aquarium also
offers the advantage of allowing the programmer to use
around advices, which are not allowing in our approach
while using AspectJ.

To sum up, Ruby/Aquarium is a great choice if aspect
(de) activations happens no so frequently, since unweaving
removes the whole overhead associated with aspects.

As future work we plan to evaluate this coordination
mechanisms for other domains, and possibly other plat-
forms for its implementation. Our approach works now as
a workaround that enables to control de execution of the
aspects based on the context information. Therefore, we
need to study if proposed mechanism can be integrated into
the aspect language or platform. This would give the aspect
programmer some tools for coping with aspect interactions.

REFERENCES

[1] Aquarium framework.
http://aquarium.rubyforge.org/.

[2] AspectJ documentation: Language Semantics.
http://www.eclipse.org/aspectj/doc/released/progguide/semantics-
aspects.html.

[3] J. Blom. Personalization - a taxonomy. In CHI 2000 Work-
shop on Designing Interactive Systems for 1-to-1 Ecommerce,
2000.

[4] Drools rule engine.
http://www.jboss.org/drools.

[5] B. DuCharme. XML: the annotated specification. The Charles
F. Goldfarb series on open information management. Prentice-
Hall PTR, Upper Saddle River, NJ 07458, USA, 1999.

[6] Google docs.
http://docs.google.com/.

[7] The Java language specification.
http://java.sun.com/docs/books/jls/third edition/html/j3TOC.html.

[8] JCP. A metadata facility for the Java programming language,
2004. http://www.jcp.org/en/jsr/detail?id=175.

[9] JRuby pure Java implementation of the Ruby language.
http://www.jruby.org/.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. pages 327–
353. Springer-Verlag, 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In M. Akşit and S. Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of LNCS, pages
220–242. Springer Verlag, 1997.

[12] MSDN. C # language specification - attribute spec-
ification. http://msdn.microsoft.com/library/default.asp?url
=/library/en-us/csspec/html/vclrfcsharpspec 17 2.asp.

[13] Ruby programming language.
http://www.ruby-lang.org/en/.

[14] Ruleby a Ruby rule-engine.
http://rubyforge.org/projects/ruleby/.

[15] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and
S. Komiya. Association aspects. In AOSD ’04: Proceedings of
the 3rd international conference on Aspect-oriented software
development, pages 16–25, New York, NY, USA, 2004. ACM.

[16] F. Sanen, E. Truyen, B. D. Win, W. Joosen, N. Loughran,
G. Coulson, A. Rashid, A. Nedos, A. Jackson, and S. Clarke.
Study on interaction issues. Technical Report AOSD-Europe
Deliverable D44, AOSD-Europe-KUL-7, Katholieke Univer-
siteit Leuven, 28 February 2006 2006.

[17] T. Schummer and S. Lukosch. Patterns for Computer-
Mediated Interaction (Wiley Software Patterns Series). Wiley,
August 2007.

[18] D. Torres, A. Fernández, G. Rossi, and S. E. Gordillo. Foster-
ing groupware tailorability through separation of concerns. In
J. M. Haake, S. F. Ochoa, and A. Cechich, editors, CRIWG,
volume 4715 of Lecture Notes in Computer Science, pages
143–156. Springer, 2007.

[19] J. Viega and J. Voas. Can aspect-oriented programming lead
to more reliable software? IEEE Softw., 17(6):19–21, 2000.

[20] C. Walls, N. Richards, and R. Oberg. XDoclet in Action (In
Action series). Manning Publications Co., Greenwich, CT,
USA, 2003.

[21] A. Zambrano, L. Polasek, and S. Gordillo. Decoupling
personalization aspects in mobile applications. In HCI related
papers of Interaccin 2004, pages 29–40. Springer Nether-
lands, 2005.



[22] A. Zambrano, T. Vera, and S. Gordillo. Solving aspectual
semantic conflicts in resource aware systems. In W. Cazzola,
S. Chiba, Y. Coady, and G. Saake, editors, Third ECOOP
Workshop on Reflection, AOP and Metadata for Software
Evolution, Nantes, France, 2006.


	Introduction
	Concerns in Collaborative Web Applications
	Running Example
	Interactions between Collaborative Web Application Concerns
	The Role of the Execution Context

	Aspect Coordination
	 General Approach
	Implementing Coordination in Java and AspectJ
	Implementing Coordination in Ruby and Aquarium

	Comparison between Java and Ruby Implementations
	Common Characteristics
	Dynamic vs Static approaches
	Aspect Instantiation
	Aspect Modelling
	Using Around Advices
	Expressing and Attaching Semantic Information
	Performance

	Conclusion and Future Work
	References

