EFFECTS

Pierre-Marie Pédrot
Max Planck Institute for Software Systems

CSEC Kick-off
8th March 2018

«O>» < Fr «=)r «=)» DA™



S



It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

2/42



It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

2/42



It's time to CIC ass and chew bubble-gum

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system. )
o Not just higher-order logic, not just first-order logic ‘
o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 2/42



The Most Important Issue of Them All

Yet CIC suffers from a fundamental flaw.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 3/42



The Most Important Issue of Them All
Yet CIC suffers from a fundamental flaw.

o You want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE

o ... and you're asked the FREAPF“‘\ question.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

3/42



The Most Important Issue of Them All
Yet CIC suffers from a fundamental flaw.

o You want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE

o ... and you're asked the FREAPF“‘A question.

CONLP YOU WRITE A HELL® WORLP

=) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 3/42



This is pretty much standard. By the Curry-Howard correspondence
«O>» <Fr «=Z»r «E>» = Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  4/42



A Well-known Limitation

This is pretty much standard. By the Curry-Howard correspondence
Logic &

o no exceptions, state, non-termination, printing...
o ...

Programming
That means in CIC, amongst which:
and thus no Hello World

Dually, for the same reasons, FSEN& VI (V- VoE I I60 0 (e
o Curry-Howard principle: effects extend your logic.
P.-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

08/03/2018  4/42



@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
@ To write Hello World.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  5/42



Thesis

We want a type theory with effects!

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
® To write Hello World.

It's not just randomly coming up with typing rules though.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 5/42



Thesis

We want a type theory with effects!

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
® To write Hello World.

It's not just randomly coming up with typing rules though.

We want a model of type theory with effects.

@ The theory ought to be logically consistent
@ It should be implementable (e.g. decidable type-checking)
@ Other nice properties like canonicity (- n: N implies n~» S ... S0)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 5/42



« CIC, the LLVM of Type Theory »

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 6/42



Dependency entails one major difference with usual program translations.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  7/42



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3 B I'M:B
I'FM: A

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 7/42



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3;B TFM:B
I'EM:A

Bad news 1
Typing rules embed the dynamics of programs!

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 7/42



Conversion

Dependency entails one major difference with usual program translations.

Meet conversion:

A=3;B TFM:B
I'EM:A

Bad news 1

Typing rules embed the dynamics of programs!

Combine that with this other observation and we're in trouble.

Bad news 2

Effects make reduction strategies relevant.

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 7/42



«O> <Fr o« o



A Though Choice

We have two canonical possibilities in presence of effects.

Call-by-value Call-by-name

@ Usual monadic decomposition o More complex model (CBPV)
o Understandable semantics o Counter-intuitive behaviours
o Values still enjoy canonicity o Jeopardizes canonicity
o Good old ML o WTF PLT?
=] = = E E DA

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 8/42



Recall conversion:

AEﬁB

I'M:B
'EM:A

«O>» < Fr «=)r «=)» DA™




Recall conversion:

AEﬁB

'tM:B
'EM: A

«O>» «Fr «E» < 3 Q>

In case you forgot your glasses:




Problem |

Recall conversion:

A =3 B rrwm:s

'EM: A

In case you forgot your glasses:
CIC has an CBN equational theory.

It's unclear what you can do with CBV dependency...

. and probably type terrorists will start crying foul and calling it heresy.

So we have to stick to CBN to please the conservative reviewers.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 9/42



Assuming rightly | don't care about peer pressure, we have another issue.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  10/42



Assuming rightly | don't care about peer pressure, we have another issue.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  10/42




Problem |1

Assuming rightly | don't care about peer pressure, we have another issue.

Monadic encodings don't scale to dependent types.

The reason lies in the typing of bind:
bind: TA— (A— TB)— TB.
It's seemingly not possible to adapt it to the dependent case!
dbind : II(z: T A). Il(z: A).T (Bzx)) —» T (B?).

Meanwhile, CBPV naturally extends to dependent types.

We also have to stick to CBN for technical reasons.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

10/ 42



Life is Life

Like Homer, we're dragged to the horrible CBN side against our will.

Come on, what could possibly go wronger?

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 11/42



Life is Life

Like Homer, we're dragged to the horrible CBN side against our will.

Come on, what could possibly go wronger?

Dependent elimination + CBN effects = inconsistency

This is the internal counterpart of the lack of canonicity.

Taming effects in a dependent world

DA
08/03/2018

11/42



Reduction vs. Effects

o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 12/42



Reduction vs. Effects

o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved

Why is that?

In call-by-name + effects:
(Az. M) N= M{z:= N} ~-  arbitrary substitution
(Ab: bool. M) fail ~»  non-standard booleans

In call-by-value + effects:

(Ax. M) V= M{z:=V} ~» substitute only values
(Ab : unit. fail b) ~ invalid n-rule

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 12/42



Eliminating Addiction to Dependence

Recall that dependent elimination is just the induction principle.
For instance, on the boolean type:

'EM:B ' Ny : P{b:=true} ' Ny: P{b:= false}
'k if M then N; else Ny : P{b:= M}

This is a statement reflecting canonicity as an internal property in CIC.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

08/03/2018  13/42



Eliminating Addiction to Dependence

Recall that dependent elimination is just the induction principle.
For instance, on the boolean type:

'-M:B ' Ny : P{b:=true} ' Ny: P{b:= false}
'k if M then N; else Ny : P{b:= M}

This is a statement reflecting canonicity as an internal property in CIC.

But there are effectful closed booleans which are neither true nor false...
Dependent elimination is hardcore intuitionistic.

It makes a very strong assumption about the universe of discourse.

Note also that dependent elimination on X-types implies AC...

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 13 /42



Dependent elimination + CBN effects = inconsistency.



If there is no solution, there is no problem

Dependent elimination + CBN effects = inconsistency.

Two Easy Ways Out!

@ Get into rehab: weaken dependent elimination for a linear fix.

@ Embrace inconsistency: truth is a totally overrated social construct.

In the remaining of this talk, we will have a look at one instance of each
case, namely read-only cells and exceptions.

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 14 /42



The reader translation, a.k.a. Baby Forcing

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 15 /42



The Reader Translation
Assume some fixed cell type R.

The reader translation extends type theory with

read : R
into : O—-R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

16 / 42



The Reader Translation
Assume some fixed cell type R.

The reader translation extends type theory with

read : R
into : O—-R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

The into function has unfoldings on type formers:

into (Ilz: A.B) r = Ilz: A.into B r

into A r A for positive A

and it is somewhat redundant:

enterg Ar = into Ar

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

16 / 42



The Reader Implementation

Assuming 7: R, intuitively:
o Translate A : Ointo [A],: 0O
o Translate M : A into [M],: [A],

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world

08/03/2018

17 /42



The Reader Implementation

Assuming 7: R, intuitively:
o Translate A : Ointo [A],: 0O
o Translate M : A into [M],: [A],

On the other side of the CBPV adjunction:

d], = O

Mz: A.B], = Hz:(Is:R.[A]).[B],
[x] = zr

[M N, = [M], (As:R.[N]y)

Ax: A M), = Xz:(ls:R.[A]s). [M],

All variables are thunked w.r.t. R!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

17 /42



The Reader Implementation: Inductive Types

PLT tells us we have to take [B], = B.
o It's possible to implement non-dependent pattern matching as usual.

o Preserves definitional computation rules

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 18 /42



The Reader Implementation: Inductive Types

PLT tells us we have to take [B], = B.
o It's possible to implement non-dependent pattern matching as usual.

o Preserves definitional computation rules

But it's not possible to implement dependent pattern matching!
[IIP:B — O. P true — P false — IIb: B. P 0],

= [IP:R— (R—B) - 0.
(IIs:R.Ps(A_:R.true)) » (Is: R. P s (A_:R.false)) —
IIb:R—B.Prb

P only holds for two specific values but b: R — B can be anything!

We cannot even test in general that b is extensionally one of those values.

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 18/42



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 19/42



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.

Indeed, if P rb=® r (b r) for some P, the induction principle becomes
(Ils: R.® s true) — (IIs: R.® s false) > [Ib: R —-B.® r(br)

which is provable by case-analysis on b 7.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 19/42



Not All Predicates are Equal

For certain predicates P: R — (R — B) — [, induction still valid though.
Indeed, if P rb=® r (b r) for some P, the induction principle becomes

(IIs: R.® s true) — (IlIs: R.® s false) - IIb: R - B.® r (b )

which is provable by case-analysis on b 7.
Such predicates evaluate « immediately » their argument b.

They only rely on the resulting value!

This property is completely independent from the reader effect.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 19/42



Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Actually we have a generic semantic criterion for valid predicates.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 20 /42



Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Actually we have a generic semantic criterion for valid predicates.

LINEARITY.

o Courtesy of G. Munch, rephrased recently by P. Levy.
o Little to do with « linear use of variables »

o Although tightly linked to linear logic

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

20 /42



Linearity in a Nutshell

Defined as an (undecidable) equational property of CBN functions.
A function f: A — Bis linear in A if for all Z: box A,

f (match Z with Box z = z) = match Z with Box 2= fz

where
Inductive box A := Box: A — box A.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

21/42



Linearity in a Nutshell

Defined as an (undecidable) equational property of CBN functions.
A function f: A — Bis linear in A if for all Z: box A,

f (match Z with Box z = z) = match Z with Box 2= fz

where
Inductive box A := Box: A — box A.

o ACBN f: A — Bis linear in A if semantically CBV in A.

o Categorically, f linear iff it is an algebra morphism.

o In a pure language, all functions are linear!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

21/42



Linear Dependence is All You Need

We restrict dependent elimination in the following way:

I'-M:B Plinear in b
I'F if M then N; else Ny : P{b:= M}

©

Can be underapproximated by a syntactic criterion
o A new kind of guard condition in CIC
o The CBN doppelganger of the dreaded value restriction in CBV!

©

Every predicate can be freely made linear thanks to storage operators

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 22 /42



A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.

Strict subset of CIC
Works with our forcing translation (LICS 2016)
Works with our weaning translation (LICS 2017)

© © o

©

Prevents Herbelin's paradox: CIC + callcc inconsistent

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 23 /42



A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.

o Strict subset of CIC
o Works with our forcing translation (LICS 2016)
o Works with our weaning translation (LICS 2017)

o Prevents Herbelin's paradox: CIC + callcc inconsistent

BTT is the generic theory to deal with dependent effects
« Bishop-style, effect-agnostic type theory »

(Take that, Brouwerian HoTT!)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 23 /42



P-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

08/03/2018

DA

24 /42



That's literally what we are going to do.

aQ >

] ) = E PENE
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 24 /42



The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with

E : O
raise : I[IA:OE— A

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

25 /42



The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with
E O
raise : IIA:0O.E— A

As hinted before, we need to be call-by-name to feature full conversion
raise (Ilz: A. B) e =
match (raise Z e) ret Pwith j =

where P: 7 — [.

Az: A.raise B e
raise (P (raise Z ¢€)) e

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 25 /42



The Exceptional Type Theory: Overview

The exceptional type theory extends vanilla CIC with
E O
raise : IIA:0O.E— A

As hinted before, we need to be call-by-name to feature full conversion.

raise (Ilz: A. B) e =
match (raise Z e) ret Pwith j =
where P: 7 — [l

Az: A.raise B e
raise (P (raise Z ¢€)) e

Remark that in call-by-name, if M: A — B, in general

M (raise Ae) # raiseBe

for otherwise we would not have (Az: A. M) N= M{z:= N}.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

25 /42



Catch Me If You Can

Remember that on functions:

raise (Ilz: A.B) e = MAz:A.raise Be

It means catching exceptions is limited to positive datatypes!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 26 /42



Catch Me If You Can

Remember that on functions:

raise (Ilz: A.B) e = MAz:A.raise Be

It means catching exceptions is limited to positive datatypes!

For inductive types, this is a generalized induction principle.

catchg: IIP:B — [ Breee : IIP:B — [,
P true — P true —
P false — P false —
(Ile: E. P (raise B ¢)) —
IIb:B.Pb IIp:B.Pb
where

catchg P p; py p. true =

catchg P p; pr p. false = py

catchg P p; py pe (raise Be) = pee

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

26 /42



The Exceptional Implementation, Negative case

Intuitive idea: translate every A : Ointo [A] : ¥A:O.E — A.

[A] : O:=m [4] and [Alg : E — [A] := m2 [4]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 27 /42



The Exceptional Implementation, Negative case

Intuitive idea: translate every A : Ointo [A] : ¥A:O.E — A.

[A] : O:=m [4] and [Alg : E — [A] := m2 [4]

Because CBN, trivial on the negative fragment:

[IIz: A. B] = Iz: [A].[B]
Mlz: A.Blg e = Mx:[A].[Bls e
[x] = =z

(M N = (M) [N]

[Az: A. M| = Az:[A]. [M]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 27 /42



The Exceptional Implementation, Positive case
The really interesting case is the inductive part of CIC.

How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 28 /42



The Exceptional Implementation, Positive case

The really interesting case is the inductive part of CIC.

How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?
Very simple: add a default case to every inductive type!

Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 28 /42



The Exceptional Implementation, Positive case
The really interesting case is the inductive part of CIC.
How to implement e.g. [B]z : E — [B]? Or worse [ L]z : E — [L]?
Very simple: add a default case to every inductive type!
Inductive [B] := [true]: [B] |[false]:[B] |Bg:E — [B]

Pattern-matching is translated pointwise, except for the new case.
[IIP:B — 0. P true — P false — I[Ib: B. P ¥]
= IIP:[B] — [O]. P [true] — P [false| — IIb: [B]. P b

o If bis [true], use first hypothesis
o If bis [false], use second hypothesis

o If bis an error By e, reraise e using [P b]y e

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

28 /42



The exceptional translation interprets all of CIC. I
«O>» <Fr «=Z»r «E>» = Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  29/42




Logic Strikes Back

Theorem J

The exceptional translation interprets all of CIC.

© A type theory with effects!

© Compiled away to CIC!

© Features full conversion

© Features full dependent elimination

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 29 /42



Logic Strikes Back

Theorem
The exceptional translation interprets all of CIC. J

© A type theory with effects!

© Compiled away to CIC!

© Features full conversion

© Features full dependent elimination

® Ah, yeah, and also, the theory is inconsistent.

It suffices to raise an exception to inhabit any type.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 29 /42



An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?
«O> A Fr «=)r «=)» = o>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  30/42



An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?
If= M: L, then M = raise L e for some e: E. I

«4O> «Fr «=)» <« o>

i
-



Consistency: A Social Construct

An Impure Dependently-typed Programming Language
Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)

If M: L, then M = raise L e for some e : E.

A Safe Target Framework
You can still use the CIC target to prove properties about exceptional pro-
grams!

Taming effects in a dependent world

DA
08/03/2018  30/42



Consistency: A Social Construct

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)
If M: L, then M = raise L e for some e : E.

A Safe Target Framework

You can still use the CIC target to prove properties about exceptional pro-
grams!

Cliffhanger

You can prove that a program does not raise uncaught exceptions.

o =) E E E DAl
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 30/42



Consistency: A Social Construct

An Impure Dependently-typed Programming Language

Do you whine about the fact that OCaml is logically inconsistent?

Theorem (Exceptional Canonicity a.k.a. Progress a.k.a. Meaningless explanations)
If M: L, then M = raise L e for some e : E.

A Safe Target Framework

You can still use the CIC target to prove properties about exceptional pro-
grams!

Cliffhanger

You can prove that a program does not raise uncaught exceptions.

And now for a little ad before the continuing the show!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 30/42

N



Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 31/42



Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 31/42



Informercial — Did You Know?

The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

First-order purification

If Pisa XY type, then -cic [P] ++ P+ E.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 31/42



Informercial — Did You Know?
The exceptional translation is just a principled Friedman's A-translation!

As such, it can be used for classical proof extraction.

Informative double-negation
[—A] 2 ([A] = E) - E

First-order purification

If Pisa X type, then Fcic [P] <+ P+ E.

Friedman's Trick in CIC
If Pand @ are E? types, Fcic p : P. == @ implies Fgic Hp : P. Q.

Da

[m] = = =
P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 31/42



If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!
Cliffhanger (cont.)

You can prove that a program does not raise uncaught exceptions.

P-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

DA
08/03/2018

32/42



If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!
Cliffhanger (cont.)

For instance,

You can prove that a program does not raise uncaught exceptions

Let’s call valid a program that “does not raise exceptions".

o there is no valid proof of L

o the only valid booleans are true and false

o a function is valid if it produces a valid result out of a valid argument
P.-M. Pédrot (MPI-SWS)

Taming effects in a dependent world

DA
08/03/2018

32/42



If You Joined the Talk Recently

The exceptional type theory is logically inconsistent!
Cliffhanger (cont.)

For instance,

You can prove that a program does not raise uncaught exceptions

Let’s call valid a program that “does not raise exceptions".

o there is no valid proof of L

o the only valid booleans are true and false

o a function is valid if it produces a valid result out of a valid argument

Validity is a type-directed notion!
P.-M. Pédrot (MPI-SWS)

[m]

Taming effects in a dependent world

=

DA
08/03/2018

32/42



The Curry-Howard-Failure Correspondence

Let's locally write M I+ A if M is valid at A.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 33/42



Let’s locally write M I A if M is valid at A.

<O «Fr « =) A




Let’s locally write M I A if M is valid at A.

v

'S What? That's just logical relations.
«O> «F>r «=)r « = = Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  33/42



The Curry-Howard-Failure Correspondence

Let's locally write M I+ A if M is valid at A.

fFrA—-B = Vz:[A]. zIFA— fzIFB

What? That's just logical relations.

Come on. That's intuitionistic realizability.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

33/42



The Curry-Howard-Failure Correspondence

Let's locally write M I+ A if M is valid at A.

fFrA—-B = Vz:[A]. zIFA— fzIFB
What? That's just logical relations.

Come on. That's intuitionistic realizability.

ﬁ Fools ! That's parametricity.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

33/42



«O> <Fr o« o



Making Everybody Agree
It's actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 34 /42



Making Everybody Agree

It's actually folklore that these techniques are essentially the same.

And there is already a parametricity translation for CIC! (Bernardy-Lasson)

We just have to adapt it to our exceptional translation.

Idea:

Feie [M] : [A]
From + M:A produce two sequents +
Fore [Mle : [A]e [M]

where [A]. : [A] — O is the validity predicate.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

34 /42



Parametric Exceptional Translation (Sketch)

Most notably,

[Mz: A.B]. f = (z:[A]) (2 : [A]: z).[B]e (f )
[B]. b ~ )= [true] + b= [false]
[L]e s = 1

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 35/42



Parametric Exceptional Translation (Sketch)

Most notably,

[Mz: A.B]. f = (z:[A]) (2 : [A]: z).[B]e (f )
[B]. b ~ )= [true] + b= [false]
[L]e s = 1

Every pure term is now automatically parametric.

If I' b M : A then [[F]]E Fcorc [M]E : IIA]]E [IW]

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018

35/42



A Few Nice Results

Let's call 7 the resulting theory. It inherits a lot from CIC!

Theorem (Consistency)

Tg is consistent.

Theorem (Canonicity)
T enjoys canonicity, i.e if Fp M:N then M ~* 1 € N. l

Theorem (Syntax)

T2 has decidable type-checking, strong normalization and whatnot.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 36 /42



Tg is not a conservative extension of CIC.
«O>r «Fr o« > < 3 Q>
~ P-M.Pédrot (MPI-SWS)  Taming effects in a dependent world ~~ 08/03/2018  37/42



T# is not a conservative extension of CIC.
Intuitively,
o raising uncaught exceptions is forbidden in 7
«O> A Fr «=)r «=)» = o>
~ P-M.Pérot (MPI-SWS)  Taming effects in a dependent world ~ 08/03/2018  37/42



T# is not a conservative extension of CIC.
Intuitively,
o raising uncaught exceptions is forbidden in 7
o ... but you can still raise them locally
o ...

as long as you prove they don’t escape!

«O> «F>r «=)r « =) = o>



Intuitively,
Qo ...
Qo

T.? is not a conservative extension of CIC.

o raising uncaught exceptions is forbidden in 7

but you can still raise them locally

as long as you prove they don’t escape!

«O> «F>r «=)r « =) = o>




Spoiler

Intuitively,

Qo

T# is not a conservative extension of CIC.

o raising uncaught exceptions is forbidden in 7
o ... but you can still raise them locally

as long as you prove they don’t escape!

40> «Fr « =)




Explaining the Analogy

Kreisel realizability T
Source theory HA or HA® CIC
Programming language System T Coq + exn (“unsafe Coq")
Logical meta-theory HA® CIC

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 38 /42



Source theory

Kreisel realizability

Tg
HA or HA® CIC
Programming language System T Coq + exn (“unsafe Coq")
Logical meta-theory HA®

CIC

«O>» «Fr «E» < 3 Q>



CIC™*

Using the same tricks as in Kreisel realizability:

Axiom of choice is provable in 77. (It's already in CIC...)

Independence of premises is provable in 72! (Using local exceptions.)

IP:(mA—%¥n:N.Pn)—>%¥n:N.-4A— Pn

Function extensionality is disprovable in 7!

Frr (Ai:unit.?) # (Ai: unit.tt)

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 39 /42



Implementations

Thanks to the fact we build syntactic models, we can implement them in
Coq through a plugin.

https://github.com/CogHott/coq-effects
https://github.com/CoqHott/exceptional-tt

©

Allows to add effects to Coq just today.
o Implement your favourite effectful operators...
o Compile effectful terms on the fly.

o Allows to reason about them in Coq.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 40 /42


https://github.com/CoqHott/coq-effects
https://github.com/CoqHott/exceptional-tt

Conclusion

(+]

Effects and dependency: not that complicated if sticking to CBN.

o But a trade-off about dependent elimination
o Inconsistency vs. linear dependent elimination

o Even inconsistent theories have practical interest.
o Exceptions enlarge the dynamic behaviour of your proofs
o Provide an unsafe hatch that can be used in a safe context
o An experimentally confirmed notion of effectful type theories, BTT
o Works for forcing, weaning (and callcc?)
o Restriction of dependent elimination on linearity guard condition
o Conjecture: the correct way to add effects to TT

©

Implementation of plugins in Coq: try it out.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 41 /42



Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (MPI-SWS) Taming effects in a dependent world 08/03/2018 42 /42



