
Tutorial AspectMaps

The goal of this tutorial is to introduce the features of AspectMaps to the participants of our experiment. This
tutorial consists of a live demo of the tool, applied to two sample systems: AJHotDraw and AMTest. Each of the
participants of the experiment is given a demo by one of the authors of the paper prior to that the participants
get any hands-on experience with AspectMaps.

Top-level overview of the system

Case study: AJHotDraw

1. The demo starts with an overview of the top-level view o�ered by the tool. In the top pane of the tool,
this view shows all the packages in the system that is being analyzed. Each package is represented by a
box with a label on top of it showing the package's name. The color of the package corresponds to the
aspects that a�ect source code within that package. If there are multiple aspects applying, the package is
by default colored black. In the bottom pane of the tool the list of all aspects in the system is shown. Each
aspect is given its own color, that is used throughout the visualization to identify that aspect. By default,
all aspects are enabled; aspects can be toggled on and o� from within the aspect list.

2. Note that the visual representation of AspectMaps is customizable. To this end, we have 4 input controls
in the bottom pane of the tool. For the namespaces view (the packages) that we see now, we can switch
between the Plain view (the default), and for example the Advice view. This view shows a distribution map
of which advices apply within the package. Using this view, it is possible to see which aspects apply to the
package, even if there are multiple.

3. We start the demo by disabling all aspects and then manually enabling PersistentAttributeFigure and
PersistentCompositeFigure. Note that this changes the color of the a�ected packages.

4. By clicking on the `Max out' button, a user can always return to this view.

5. By clicking the `Toggle intervened Pkgs' button, we can select whether we want to see all packages, or only
those in which aspects apply.

Zoomable visualization

Case study: AJHotDraw

1. Aspect Maps is a zoomable visualization: by double-clicking on an entity, this entity is expanded and shown
in more detail. To show this level of detail for all the packages, click the `Pkg contents' button. To illustrate
this concept, double-click on the package org.jhotdraw.figures. We now see the visualization at the
class level: each class is represented by a rectangle. Aspect de�nitions are also shown at this level: similar to
classes, they are shown as a rectangle (with as border color the color of the aspect). Inheritance relationships
within the same package are shown. Similar to packages, we can change the visualization of classes. Not
only can we replace the default visualization with a distribution map, but we can also vary the dimensions
of the rectangle representing the class based on various metrics.

2. By double-clicking the class AttributeFigure (the one colored class), we zoom further in. We can show
this level of detail for all classes in the system by clicking the `Class contents' button. At this level, the
attributes and methods of the class are shown along with the intertype declarations. So in this case, the
PersistentAttributeFigure aspect introduced two methods (read and write) in this class.

3. When hovering over an entity, the next level of detail is shown in a pop-up window.

4. By single-clicking on an entity, its source code is shown (if available) in a panel in the lower half of the tool.



Method level visualization

Case study: AJHotDraw

1. The �nest level of detail shown by the Aspect Maps visualization is the method level. We illustrate how
methods are visualized by means of the CommandContracts aspect. First, we disable all other aspects
except this one. Next, we click on the `Enabled Asp' button to zoom in to the �nest level of detail where
all enabled aspects apply (in this case on CommandContracts).

2. Each method is visualized by means of a rectangle. At the top of the rectangle, the method's name is shown.
The rest of the rectangle is divided into three sections. From top to bottom, these sections visualize the
before, around and after advice of execute join points. In this example, we see that the CommandContracts
aspect always intervenes both before and after the execution of methods named execute.

3. The section in the middle represents the execution of the method's body. It is in this section that
call join points are visualized. To illustrate this, let's zoom out to the max level and enable the
SelectionChangedNotification aspect. As I know that this aspect intervenes in a method named
removeFromSelection() I am going to �nd this method in the visualization. I do this by using the `By
Query' button and using *removeFromSelection* as a query. If we go to this method implemented by
class StandardDrawingView, we see that the aspect intervenes after a call to invalidate. We get this
information by hovering over the visualized join point.

4. Now, by using the context-menu we can click on the `Reveal Aspect' option. This
option shows us the implementation of the aspect (in this case in the package
org.jhotdraw.ccconcerns.figures.figureselectionbrowser). As for classes, AspectMaps
provided a more detailed visualization of aspects. For this example, we see two poincuts (shown as ovals),
and two pieces of advice (shown as rectangles). When zooming in on advice, the same visualization as for
methods applies.

Aspect precedence

Case study: AMTest

1. As a �nal feature, we show how Aspect Maps visualizes the precedence relationships between aspects. These
relationships are either declared explicitly by the aspect developer (declare precedence in AspectJ), or
are implied (from the order of the pointcuts/advice in the speci�cation �le). We illustrate this using a
second case study AMTest, which is actually just a small toy example used while developing AspectMaps.
For this case, we make sure that all aspects are enabled and zoom in to the most detailed level by clicking
on `Zoom in'.

2. Here we see that, if multiple aspects apply to a single join point, our visualization will indicate, by means
of an arrow, that one has precedence over the other. Note that, if the arrow is black, this precedence is
explicitly declared; if it is gray, it is implicitly deduced from the rules of the used aspect language. If there
are multiple aspects applying to a single join point, and no arrows are shown between them, this simply
means that no precedence relation exists, and that hence at run-time the order of the execution of the
aspects is undeterministic.


