
Existential Types



Motivation

If universal quantifiers are useful in programming, then what about
existential quantifiers?

Rough intuition:

Terms with universal types are functions from types to terms.

Terms with existential types are pairs of a type and a term.



Motivation

If universal quantifiers are useful in programming, then what about
existential quantifiers?

Rough intuition:

Terms with universal types are functions from types to terms.

Terms with existential types are pairs of a type and a term.



Concrete Intuition

Existential types describe simple modules:

An existentially typed value is introduced by pairing a type
with a term, written {*S,t}. (The star avoids syntactic
confusion with ordinary pairs.)

A value {*S,t} of type {∃X,T} is a module with one
(hidden) type component and one term component.

Example: p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
has type {∃X, {a:X, f:X→X}}

The type component of p is Nat, and the value component is a
record containing a field a of type X and a field f of type X→X, for
some X (namely Nat).



The same package p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
also has type {∃X, {a:X, f:X→Nat}},
since its right-hand component is a record with fields a and f of
type X and X→Nat, for some X (namely Nat).

This example shows that there is no automatic (“best”) way to
guess the type of an existential package. The programmer has to
say what is intended.
We re-use the “ascription” notation for this:

p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
as {∃X, {a:X, f:X→X}}

p1 = {*Nat, {a=5, f=λx:Nat. succ(x)}}
as {∃X, {a:X, f:X→Nat}}

This gives us the “introduction rule” for existentials:

Γ � t2 : [X �→ U]T2

Γ � {*U,t2} as {∃X,T2} : {∃X,T2}
(T-Pack)



Different representations...

Note that this rule permits packages with different hidden types to
inhabit the same existential type.

Example: p2 = {*Nat, 0} as {∃X,X}
p3 = {*Bool, true} as {∃X,X}

More useful example:
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}
p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}



Different representations...

Note that this rule permits packages with different hidden types to
inhabit the same existential type.

Example: p2 = {*Nat, 0} as {∃X,X}
p3 = {*Bool, true} as {∃X,X}

More useful example:
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}
p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}



Exercise...

Here are three more variations on the same theme:
p6 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→X}}
p7 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:Nat→X}}
p8 = {*Nat, {a=0, f=λx:Nat. succ(x)}}

as {∃X, {a:Nat, f:Nat→Nat}}

In what ways are these less useful than p4 and p5?

p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}
p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}



The elimination form for existentials

Intuition: If an existential package is like a module, then
eliminating (using) such a package should correspond to “open” or
“import.”

I.e., we should be able to use the components of the module, but
the identity of the type component should be “held abstract.”

Γ � t1 : {∃X,T12} Γ, X, x:T12 � t2 : T2

Γ � let {X,x}=t1 in t2 : T2
(T-Unpack)

Example: if
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}}

as {∃X,{a:X,f:X→Nat}}
then
let {X,x} = p4 in (x.f x.a)
has type Nat (and evaluates to 1).



Abstraction

However, if we try to use the a component of p4 as a number,
typechecking fails:

p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}}
as {∃X,{a:X,f:X→Nat}}

let {X,x} = p4 in (succ x.a)
=⇒ Error: argument of succ is not a number

This failure makes good sense, since we saw that another package
with the same existential type as p4 might use Bool or anything
else as its representation type.

Γ � t1 : {∃X,T12} Γ, X, x:T12 � t2 : T2

Γ � let {X,x}=t1 in t2 : T2
(T-Unpack)



Computation

The computation rule for existentials is also straightforward:

let {X,x}=({*T11,v12} as T1) in t2

−→ [X �→ T11][x �→ v12]t2
(E-UnpackPack)



Example: Abstract Data Types

counterADT =
{*Nat,
{new = 1,
get = λi:Nat. i,
inc = λi:Nat. succ(i)}}

as {∃Counter,
{new: Counter,
get: Counter→Nat,
inc: Counter→Counter}};

let {Counter,counter} = counterADT in
counter.get (counter.inc counter.new);



Representation independence

We can substitute another implementation of counters without
affecting the code that uses counters:

counterADT =
{*{x:Nat},
{new = {x=1},
get = λi:{x:Nat}. i.x,
inc = λi:{x:Nat}. {x=succ(i.x)}}}

as {∃Counter,
{new: Counter, get: Counter→Nat, inc: Counter→Counter}};



Cascaded ADTs

We can use the counter ADT to define new ADTs that use
counters in their internal representations:

let {Counter,counter} = counterADT in

let {FlipFlop,flipflop} =
{*Counter,
{new = counter.new,
read = λc:Counter. iseven (counter.get c),
toggle = λc:Counter. counter.inc c,
reset = λc:Counter. counter.new}}

as {∃FlipFlop,
{new: FlipFlop, read: FlipFlop→Bool,
toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));



Existential Objects

Counter = {∃X, {state:X, methods: {get:X→Nat, inc:X→X}}};
c = {*Nat,

{state = 5,
methods = {get = λx:Nat. x,

inc = λx:Nat. succ(x)}}}
as Counter;

let {X,body} = c in body.methods.get(body.state);



Existential objects: invoking methods

More generally, we can define a little function that “sends the get
message” to any counter:

sendget = λc:Counter.
let {X,body} = c in
body.methods.get(body.state);



Invoking the inc method of a counter object is a little more
complicated. If we simply do the same as for get, the typechecker
complains

let {X,body} = c in body.methods.inc(body.state);
=⇒ Error: Scoping error!

because the type variable X appears free in the type of the body of
the let.

Indeed, what we’ve written doesn’t make intuitive sense either,
since the result of the inc method is a bare internal state, not an
object.



To satisfy both the typechecker and our informal understanding of
what invoking inc should do, we must take this fresh internal state
and repackage it as a counter object, using the same record of
methods and the same internal state type as in the original object:

c1 = let {X,body} = c in
{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;

More generally, to “send the inc message” to a counter, we can
write:

sendinc = λc:Counter.
let {X,body} = c in
{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;



Objects vs. ADTs

The examples of ADTs and objects that we have seen in the past
few slides offer a revealing way to think about the differences
between “classical ADTs” and objects.

� Both can be represented using existentials

� With ADTs, each existential package is opened as early as
possible (at creation time)

� With objects, the existential package is opened as late as
possible (at method invocation time)

These differences in style give rise to the well-known pragmatic
differences between ADTs and objects:

� ADTs support binary operations

� objects support multiple representations



A full-blown existential object model

What we’ve done so far is to give an account of “object-style”
encapsulation in terms of existential types.

To give a full model of all the “core OO features” we have
discussed before, some significant work is required. In particular,
we must add:

� subtyping (and “bounded quantification”)

� type operators (“higher-order subtyping”)


	Administrivia
	Existential Types
	Recap... Where we've been
	What next?
	The End

