
Lecture Notes on
Proofs as Programs

15-317: Constructive Logic
Frank Pfenning

Lecture 4
September 3, 2009

1 Introduction

In this lecture we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional frag-
ment of logic this is called the Curry-Howard isomorphism [How80]. From
the very outset of the development of constructive logic and mathematics,
a central idea has been that proofs ought to represent constructions. The
Curry-Howard isomorphism is only a particularly poignant and beautiful
realization of this idea. In a highly influential subsequent paper, Martin-
Löf [ML80] developed it further into a more expressive calculus called type
theory.

2 Propositions as Types

In order to illustrate the relationship between proofs and programs we in-
troduce a new judgment:

M : A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We
will also interpret M : A as “M is a program of type A”. These dual inter-
pretations of the same judgment is the core of the Curry-Howard isomor-
phism. We either think of M as a term that represents the proof of A true, or
we think of A as the type of the program M . As we discuss each connective,
we give both readings of the rules to emphasize the analogy.

LECTURE NOTES SEPTEMBER 3, 2009



L4.2 Proofs as Programs

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should corre-
spond to a deduction of A true with an identical structure and vice versa.
In other words we annotate the inference rules of natural deduction with
proof terms. The property above should then be obvious.

Conjunction. Constructively, we think of a proof of A ∧ B true as a pair
of proofs: one for A true and one for B true.

M : A N : B

〈M,N〉 : A ∧B
∧I

The elimination rules correspond to the projections from a pair to its
first and second elements.

M : A ∧B

fst M : A
∧EL

M : A ∧B

snd M : B
∧ER

Hence conjunction A ∧B corresponds to the product type A×B.

Truth. Constructively, we think of a proof of > true as a unit element that
carries now information.

〈 〉 : >
>I

Hence > corresponds to the unit type 1 with one element. There is no
elimination rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A⊃B true as a func-
tion which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a func-
tion f of a variable x by writing f(x) = . . . where the right-hand side “. . .”
depends on x. For example, we might write f(x) = x2 +x−1. In functional
programming, we can instead write f = λx. x2 +x−1, that is, we explicitly
form a functional object by λ-abstraction of a variable (x, in the example).

We now use the notation of λ-abstraction to annotate the rule of impli-
cation introduction with proof terms. In the official syntax, we label the ab-
straction with a proposition (writing λu:A) in order to specify the domain
of a function unambiguously. In practice we will often omit the label to

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.3

make expressions shorter—usually (but not always!) it can be determined
from the context.

u : A
u

...
M : B

λu:A. M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis
labeled u in the proof of B corresponds to an occurrence of u in M .

As a concrete example, consider the (trivial) proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(λu:A. u) : A⊃A
⊃Iu

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = u or id = (λu:A. u).

The rule for implication elimination corresponds to function applica-
tion. Following the convention in functional programming, we write M N
for the application of the function M to argument N , rather than the more
verbose M(N).

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A⊃B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A→B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction λu:A. M and application M N .

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.

LECTURE NOTES SEPTEMBER 3, 2009



L4.4 Proofs as Programs

As a second example we consider a proof of (A ∧B)⊃(B ∧A) true.

A ∧B true
u

B true
∧ER

A ∧B true
u

A true
∧EL

B ∧A true
∧I

(A ∧B)⊃(B ∧A) true
⊃Iu

When we annotate this derivation with proof terms, we obtain a function
which takes a pair 〈M,N〉 and returns the reverse pair 〈N,M〉.

u : A ∧B
u

snd u : B
∧ER

u : A ∧B
u

fst u : A
∧EL

〈snd u, fst u〉 : B ∧A
∧I

(λu. 〈snd u, fst u〉) : (A ∧B)⊃(B ∧A)
⊃Iu

Disjunction. Constructively, we think of a proof of A ∨ B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A +B, and the two introduction rules correspond to the left and
right injection into a sum type.

M : A

inlB M : A ∨B
∨IL

N : B

inrA N : A ∨B
∨IR

In the official syntax, we have annotated the injections inl and inr with
propositions B and A, again so that a (valid) proof term has an unambigu-
ous type. In writing actual programs we usually omit this annotation. The
elimination rule corresponds to a case construct which discriminates be-
tween a left and right injection into a sum types.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

case M of inl u ⇒ N | inr w ⇒ O : C
∨Eu,w

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is N , while the scope
of the variable w is O.

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.5

Falsehood. There is no introduction rule for falsehood (⊥). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of ⊥ to stand for an expression of any type when wrapped with
abort. However, there is no computation rule for it, which means during
computation of a valid program we will never try to evaluate a term of the
form abort M .

M : ⊥
abortC M : C

⊥E

As before, the annotation C which disambiguates the type of abort M will
often be omitted.

This completes our assignment of proof terms to the logical inference
rules. Now we can interpret the interaction laws we introduced early as
programming exercises. Consider the following distributivity law:

(L11a) (A⊃(B ∧ C))⊃(A⊃B) ∧ (A⊃C) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B ∧ C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉

The following deduction provides the evidence:

u : A⊃(B ∧ C)
u

w : A
w

u w : B ∧ C
⊃E

fst (u w) : B
∧EL

λw. fst (u w) : A⊃B
⊃Iw

u : A⊃(B ∧ C)
u

v : A
v

u v : B ∧ C
⊃E

snd (u v) : C
∧ER

λv. snd (u v) : A⊃C
⊃Iv

〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃B) ∧ (A⊃C)
∧I

λu. 〈(λw. fst (u w)), (λv. snd (u v))〉 : (A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C))
⊃Iu

Programs in constructive propositional logic are somewhat uninterest-
ing in that they do not manipulate basic data types such as natural num-
bers, integers, lists, trees, etc. We introduce such data types later in this
course, following the same method we have used in the development of
logic.

LECTURE NOTES SEPTEMBER 3, 2009



L4.6 Proofs as Programs

To close this section we recall the guiding principles behind the assign-
ment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true
is a bijection.

3 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain how
proofs are to be executed, and which results may be returned by a compu-
tation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M =⇒R M ′, read “M reduces
to M ′”. A computation then proceeds by a sequence of reductions M =⇒R

M1 =⇒R M2 . . ., according to a fixed strategy, until we reach a value which
is the result of the computation. In this section we cover reduction; we may
return to reduction strategies in a later lecture.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduc-
tion rules as the constructors and the proof terms corresponding to the elim-
ination rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst 〈M,N〉 =⇒R M
snd 〈M,N〉 =⇒R N

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.7

Truth. The constructor just forms the unit element, 〈 〉. Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by λ-abstraction, while the
destructor applies the function to an argument. In general, the application
of a function to an argument is computed by substitution. As a simple ex-
ample from mathematics, consider the following equivalent definitions

f(x) = x2 + x− 1 f = λx. x2 + x− 1

and the computation

f(3) = (λx. x2 + x− 1)(3) = [3/x](x2 + x− 1) = 32 + 3− 1 = 11

In the second step, we substitute 3 for occurrences of x in x2 + x − 1, the
body of the λ-expression. We write [3/x](x2 + x− 1) = 32 + 3− 1.

In general, the notation for the substitution of N for occurrences of u in
M is [N/u]M . We therefore write the reduction rule as

(λu:A. M) N =⇒R [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in N should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

case inlB M of inl u ⇒ N | inr w ⇒ O =⇒R [M/u]N
case inrA M of inl u ⇒ N | inr w ⇒ O =⇒R [M/w]O

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood.

This concludes the definition of the reduction judgment. In the next sec-
tion we will prove some of its properties.

As an example we consider a simple program for the composition of
two functions. It takes a pair of two functions, one from A to B and one
from B to C and returns their composition which maps A directly to C.

comp : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)

LECTURE NOTES SEPTEMBER 3, 2009



L4.8 Proofs as Programs

We transform the following implicit definition into our notation step-by-
step:

comp 〈f, g〉 (w) = g(f(w))
comp 〈f, g〉 = λw. g(f(w))

compu = λw. (snd u) ((fst u)(w))
comp = λu. λw. (snd u) ((fst u) w)

The final definition represents a correct proof term, as witnessed by the
following deduction.

u : (A⊃B) ∧ (B⊃C)
u

snd u : B⊃C
∧ER

u : (A⊃B) ∧ (B⊃C)
u

fst u : A⊃B
∧EL

w : A
w

(fst u) w : B
⊃E

(snd u) ((fst u) w) : C
⊃E

λw. (snd u) ((fst u) w) : A⊃C
⊃Iw

(λu. λw. (snd u) ((fst u) w)) : ((A⊃B) ∧ (B⊃C))⊃(A⊃C)
⊃Iu

We now verify that the composition of two identity functions reduces again
to the identity function. First, we verify the typing of this application.

(λu. λw. (snd u) ((fst u) w)) 〈(λx. x), (λy. y)〉 : A⊃A

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(λu. λw. (snd u) ((fst u) w)) 〈(λx. x), (λy. y)〉
=⇒R λw. (snd 〈(λx. x), (λy. y)〉) ((fst 〈(λx. x), (λy. y)〉) w)
=⇒R λw. (λy. y) ((fst 〈(λx. x), (λy. y)〉) w)
=⇒R λw. (λy. y) ((λx. x) w)
=⇒R λw. (λy. y) w
=⇒R λw. w

We see that we may need to apply reduction steps to subterms in order
to reduce a proof term to a form in which it can no longer be reduced. We
postpone a more detailed discussion of this until we discuss the operational
semantics in full.

4 Expansion

We saw in the previous section that proof reductions that witness local
soundness form the basis for the computational interpretation of proofs.

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.9

Less relevant to computation are the local expansions. What they tell us,
for example, is that if we need to return a pair from a function, we can al-
ways construct it as 〈M,N〉 for some M and N . Another example would
be that whenever we need to return a function, we can always construct it
as λu. M for some M .

We can derive what the local expansion must be by annotating the de-
ductions witnessing local expansions from Lecture 3 with proof terms. We
leave this as an exercise to the reader. The left-hand side of each expan-
sion has the form M : A, where M is an arbitrary term and A is a logical
connective or constant applied to arbitrary propositions. On the right hand
side we have to apply a destructor to M and then reconstruct a term of the
original type. The resulting rules can be found in Figure 3.

5 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A, see Figure 1
M =⇒R M ′ M reduces to M ′, see Figure 2
M : A =⇒E M ′ M expands to M ′, see Figure 3

References

[How80] W. A. Howard. The formulae-as-types notion of construction.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 479–
490. Academic Press, 1980. Hitherto unpublished note of 1969,
rearranged, corrected, and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer pro-
gramming. In Logic, Methodology and Philosophy of Science VI,
pages 153–175. North-Holland, 1980.

LECTURE NOTES SEPTEMBER 3, 2009

http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/03-harmony.pdf


L4.10 Proofs as Programs

Constructors Destructors

M : A N : B

〈M,N〉 : A ∧B
∧I

M : A ∧B

fst M : A
∧EL

M : A ∧B

snd M : B
∧ER

〈 〉 : >
>I

no destructor for >

u : A
u

...
M : B

λu:A. M : A⊃B
⊃Iu

M : A⊃B N : A

M N : B
⊃E

M : A

inlB M : A ∨B
∨IL

N : B

inrA N : A ∨B
∨IR

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

case M of inl u ⇒ N | inr w ⇒ O : C
∨Eu,w

no constructor for ⊥
M : ⊥

abortC M : C
⊥E

Figure 1: Proof term assignment for natural deduction

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.11

fst 〈M,N〉 =⇒R M
snd 〈M,N〉 =⇒R N

no reduction for 〈 〉

(λu:A. M) N =⇒R [N/u]M

case inlB M of inl u ⇒ N | inr w ⇒ O =⇒R [M/u]N
case inrA M of inl u ⇒ N | inr w ⇒ O =⇒R [M/w]O

no reduction for abort

Figure 2: Proof term reductions

M : A ∧B =⇒E 〈fst M, snd M〉
M : A⊃B =⇒E λu:A. M u for u not free in M
M : > =⇒E 〈 〉
M : A ∨B =⇒E case M of inl u ⇒ inlB u | inr w ⇒ inrA w

M : ⊥ =⇒E abort⊥ M

Figure 3: Proof term expansions

LECTURE NOTES SEPTEMBER 3, 2009


	Introduction
	Propositions as Types
	Reduction
	Expansion
	Summary of Proof Terms

