Properties of the Typing Relation

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. *Progress:* A well-typed term is not stuck

If t : T, then either t is a value or else $t \longrightarrow t'$ for some t'.

2. Preservation: Types are preserved by one-step evaluation If t : T and $t \longrightarrow t'$, then t' : T.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then $R = Bool and t_1$: Nat.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Proof: ...

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
  let T1 = typeof(t1) in
  let T2 = typeof(t2) in
  let T3 = typeof(t3) in
  if T1 = Bool and T2=T3 then T2
  else "not typable"
else if t = 0 then Nat
else if t = succ t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Nat else "not typable"
else if t = pred t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Nat else "not typable"
else if t = iszero t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Bool else "not typable"
```

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof:

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value
Fo	r par	t 1,	

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value
Fo	r par	t 1, if v is true or false,	the result is immediate.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool. Part 2 is similar.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The T-T-T-E- and T-Z-E-R-O cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The $T\text{-}T\text{-}T\text{-}\text{RUE},\ T\text{-}\text{FALSE},$ and T-ZERO cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The T-T-T-E- and T-Z-E-R-O cases are immediate, since t in these cases is a value.

Case T-IF:
$$t = if t_1 then t_2 else t_3$$

 $t_1 : Bool t_2 : T t_3 : T$

By the induction hypothesis, either t_1 is a value or else there is some t'_1 such that $t_1 \longrightarrow t'_1$. If t_1 is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t'_1$, then, by E-IF, $t \longrightarrow \text{if } t'_1$ then t_2 else t_3 .

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-SUCC, T-PRED, and T-IsZERO are similar.

(Recommended: Try to reconstruct them.)

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value, so it cannot be that $t \longrightarrow t'$ for any t', and the theorem is vacuously true.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$ There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: $t_1 = true$ $t' = t_2$ Immediate, by the assumption t_2 : T.

(E-IFFALSE subcase: Similar.)

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: $t_1 \longrightarrow t'_1$ $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$ Applying the IH to the subderivation of t_1 : Bool yields t'_1 : Bool. Combining this with the assumptions that t_2 : T and t_3 : T, we can apply rule T-IF to conclude that if t'_1 then t_2 else t_3 : T, that is, t': T.