
Universal Types



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)
doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once

... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)
doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)
doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
λ-abstraction. So let’s just re-use the notation.

Abstraction:
double = λX. λf:X→X. λx:X. f (f x)

Application:
double [Nat]
double [Bool]

Computation:
double [Nat] −→ λf:Nat→Nat. λx:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T
would be more consistent.)



Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X



Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X



Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X



System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms

x variable

λx:T.t abstraction

t t application

λX.t type abstraction

t [T] type application

v ::= values

λx:T.t abstraction value

λX.t type abstraction value



System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms

x variable

λx:T.t abstraction

t t application

λX.t type abstraction

t [T] type application

v ::= values

λx:T.t abstraction value

λX.t type abstraction value



System F: new evaluation rules

t1 −→ t�
1

t1 [T2] −→ t�
1 [T2]

(E-TApp)

(λX.t12) [T2] −→ [X �→ T2]t12 (E-TappTabs)



System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types

X type variable

T→T type of functions

∀X.T universal type



System F: Typing Rules

x:T ∈ Γ

Γ � x : T
(T-Var)

Γ, x:T1 � t2 : T2

Γ � λx:T1.t2 : T1→T2
(T-Abs)

Γ � t1 : T11→T12 Γ � t2 : T11

Γ � t1 t2 : T12
(T-App)

Γ, X � t2 : T2

Γ � λX.t2 : ∀X.T2
(T-TAbs)

Γ � t1 : ∀X.T12

Γ � t1 [T2] : [X �→ T2]T12
(T-TApp)



History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very different at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.



Examples



Lists

cons : ∀X. X → List X → List X
head : ∀X. List X → X
tail : ∀X. List X → List X
nil : ∀X. List X
isnil : ∀X. List X → Bool

map =
λX. λY.

λf: X→Y.
(fix (λm: (List X) → (List Y).

λl: List X.
if isnil [X] l
then nil [Y]
else cons [Y] (f (head [X] l))

(m (tail [X] l))));

l = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));

head [Nat] (map [Nat] [Nat] (λx:Nat. succ x) l);



Church Booleans

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;
fls = λX. λt:X. λf:X. f;

not = λb:CBool. λX. λt:X. λf:X. b [X] f t;



Church Numerals

CNat = ∀X. (X→X) → X → X;

c0 = λX. λs:X→X. λz:X. z;
c1 = λX. λs:X→X. λz:X. s z;
c2 = λX. λs:X→X. λz:X. s (s z);

csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z);

cplus = λm:CNat. λn:CNat. m [CNat] csucc n;



Properties of System F

Preservation and Progress: unchanged.

(Proofs similar to what we’ve seen.)

Strong normalization: every well-typed program halts. (Proof is
challenging!)

Type reconstruction: undecidable (major open problem from 1972
until 1994, when Joe Wells solved it).



Parametricity

Observation: Polymorphic functions cannot do very much with
their arguments.

� The type ∀X. X→X→X has exactly two members (up to
observational equivalence).

� ∀X. X→X has one.

� etc.

The concept of parametricity gives rise to some useful “free
theorems...”


