
Universal Types



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)
doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once

... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!
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Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
λ-abstraction. So let’s just re-use the notation.

Abstraction:
double = λX. λf:X→X. λx:X. f (f x)

Application:
double [Nat]
double [Bool]

Computation:
double [Nat] −→ λf:Nat→Nat. λx:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T
would be more consistent.)



Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X
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System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms

x variable

λx:T.t abstraction

t t application

λX.t type abstraction

t [T] type application

v ::= values

λx:T.t abstraction value

λX.t type abstraction value
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System F: new evaluation rules

t1 −→ t�
1

t1 [T2] −→ t�
1 [T2]

(E-TApp)

(λX.t12) [T2] −→ [X �→ T2]t12 (E-TappTabs)



System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types

X type variable

T→T type of functions

∀X.T universal type



System F: Typing Rules

x:T ∈ Γ

Γ � x : T
(T-Var)

Γ, x:T1 � t2 : T2

Γ � λx:T1.t2 : T1→T2
(T-Abs)

Γ � t1 : T11→T12 Γ � t2 : T11

Γ � t1 t2 : T12
(T-App)

Γ, X � t2 : T2

Γ � λX.t2 : ∀X.T2
(T-TAbs)

Γ � t1 : ∀X.T12

Γ � t1 [T2] : [X �→ T2]T12
(T-TApp)



History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very different at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.



Examples



Lists

cons : ∀X. X → List X → List X
head : ∀X. List X → X
tail : ∀X. List X → List X
nil : ∀X. List X
isnil : ∀X. List X → Bool

map =
λX. λY.

λf: X→Y.
(fix (λm: (List X) → (List Y).

λl: List X.
if isnil [X] l
then nil [Y]
else cons [Y] (f (head [X] l))

(m (tail [X] l))));

l = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));

head [Nat] (map [Nat] [Nat] (λx:Nat. succ x) l);



Church Booleans

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;
fls = λX. λt:X. λf:X. f;

not = λb:CBool. λX. λt:X. λf:X. b [X] f t;



Church Numerals

CNat = ∀X. (X→X) → X → X;

c0 = λX. λs:X→X. λz:X. z;
c1 = λX. λs:X→X. λz:X. s z;
c2 = λX. λs:X→X. λz:X. s (s z);

csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z);

cplus = λm:CNat. λn:CNat. m [CNat] csucc n;



Properties of System F

Preservation and Progress: unchanged.

(Proofs similar to what we’ve seen.)

Strong normalization: every well-typed program halts. (Proof is
challenging!)

Type reconstruction: undecidable (major open problem from 1972
until 1994, when Joe Wells solved it).



Parametricity

Observation: Polymorphic functions cannot do very much with
their arguments.

� The type ∀X. X→X→X has exactly two members (up to
observational equivalence).

� ∀X. X→X has one.

� etc.

The concept of parametricity gives rise to some useful “free
theorems...”


